Skip to main content
Log in

An atomic switch realized with the scanning tunnelling microscope

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE scanning tunnelling microscope1 (STM) has been employed in recent years in attempts to develop atomic-scale electronic devices, both by examining device-like characteristics in preexisting structures2,3 and by creating new structures by the precise manipulation of atoms and molecules with the STM tip4–6. Here we report the operation of a bistable switch that derives its function from the motion of a single atom. A xenon atom is moved reversibly between stable positions on each of two stationary conducting 'leads', corresponding to the STM tip and a nickel surface. The state of the switch is set (that is, the xenon atom is moved to the desired location) by the application of a voltage pulse of the appropriate sign across the leads. The state of the switch is identified by measuring the conductance across the leads. This switch is a prototype of a new class of potentially very small electronic devices which we will call atom switches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hansma, P. K. & Tersoff, J. J. appl. Phys. 61, R1–R23 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Lyo, I.-W. & Avouris, P. Science 245, 1369–1371 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Bedrossian, P., Chen, D. M., Mortensen, K. & Golovchenko, J. A. Nature 342, 258–260 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Eigler, D. M. & Schweizer, E. K. Nature 344, 524–526 (1990).

    Article  ADS  CAS  Google Scholar 

  5. New Scientist 129, 20 (23 Feb. 1991).

  6. New Scientist 26, 31 (26 Jan. 1991).

  7. Becker, R. S., Golovchenko, J. A. & Swartzentruber, B. S. Nature 325, 419–421 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Fuchs, H. & Schimmel, T. Adv. Mater. 3, 112–113 (1991).

    Article  CAS  Google Scholar 

  9. Mamin, H. J., Guethner, P. H. & Rugar, D. Phys. Rev. Lett. 65, 2418–2421 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Whitman, L. J., Stroscio, J. A., Dragoset, R. A. & Celotta, R. J. Science 251, 1206–1210 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Lyo, I.-W. & Avouris, P. Science 253, 173–176 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Haberland, H., Kolar, T. & Reiners, T. Phys. Rev. Lett. 63, 1219–1222 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Eigler, D. M., Weiss, P. S., Schweizer, E. K. & Lang, N. D. Phys. Rev. Lett. 66, 1189–1192 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Ralls, K. S., Ralph, D. C. & Buhrman, R. A. Phys. Rev. B40, 11561–11570 (1989).

    Article  CAS  Google Scholar 

  15. Verbruggen, A. H. IBM J. Res. Dev. 32, 93–98 (1988).

    Article  CAS  Google Scholar 

  16. Landauer, R. Physica A168, 75–87 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eigler, D., Lutz, C. & Rudge, W. An atomic switch realized with the scanning tunnelling microscope. Nature 352, 600–603 (1991). https://doi.org/10.1038/352600a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352600a0

  • Springer Nature Limited

This article is cited by

Navigation