Skip to main content

Advertisement

Log in

Evidence for a subsurface ocean on Europa

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Ground-based spectroscopy of Jupiter's moon Europa, combined with gravity data, suggests that the satellite has an icy crust roughly 150 km thick and a rocky interior1,2,3,4. In addition, images obtained by the Voyager spacecraft revealed that Europa's surface is crossed by numerous intersecting ridges and dark bands (called lineae) and is sparsely cratered, indicating that the terrain is probably significantly younger than that of Ganymede and Callisto5. It has been suggested that Europa's thin outer ice shell might be separated from the moon's silicate interior by a liquid water layer, delayed or prevented from freezing by tidal heating6,7,8,9,10; in this model, the lineae could be explained by repetitive tidal deformation of the outer ice shell11,12,13. However, observational confirmation of a subsurface ocean was largely frustrated by the low resolution (>2 km per pixel) of the Voyager images14. Here we present high-resolution (54 m per pixel) Galileo spacecraft images of Europa, in which we find evidence for mobile ‘icebergs’. The detailed morphology of the terrain strongly supports the presence of liquid water at shallow depths below the surface, either today or at some time in the past. Moreover, lower-resolution observations of much larger regions suggest that the phenomena reported here are widespread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Disrupted zone at 13° N, 273° W.
Figure 2: Detail from an area of mottled terrain 95 km across, just to the northeast of the area shown in Fig. 1.
Figure 3: Detail of part of the lower left quadrant of Fig. 1.

Similar content being viewed by others

References

  1. Kuiper, G. P. Planets and Satellites (Univ. Chicago Press, 1961).

    MATH  Google Scholar 

  2. Moroz, V. I. Infrared spectrophotometry of the Moon and the Galiliean satellites of Jupiter. Sov. Astron. A. J. 9, 999–1006.

  3. Morrison, D. & Cruikshank, D. P. Physical properties of the natural satellites. Space Sci. Rev. 15, 641–739 (1974).

    Article  ADS  CAS  Google Scholar 

  4. Anderson, J. D., Lau, E. L., Sjogren, W. L., Schubert, G. & Moore, W. B. Europa's differentiated internal structure: Inferences from two Galileo encounters. Science 276, 1236–1239 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Smith, B. A.et al. The Galilean satellites and Jupiter: Voyager 2 imaging science results. Science 206, 927–950 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Cassen, P., Reynolds, R. T. & Peale, S. J. Is there liquid water on Europa? Geophys. Res. Lett. 6, 731–734 (1979).

    Article  ADS  Google Scholar 

  7. Cassen, P., Reynolds, R. T. & Peale, S. J. Tidal dissipation on Europa: A correction. Geophys. Res. Lett. 7, 987–989 (1980).

    Article  ADS  Google Scholar 

  8. Squyres, S. W., Reynolds, R. T., Cassen, P. & Peale, S. J. Liquid water and active resurfacing on Europa. Nature 301, 225–226 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Ross, M. & Schubert, G. Tidal heating in an internal ocean model of Europa. Nature 325, 13–134 (1986).

    Google Scholar 

  10. Ojakangas, G. W. & Stevenson, D. J. Thermal state of an ice shell on Europa. Icarus 81, 220–241 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Greenberg, R. & Wiedenschillling, S. J. How fast do Galilean satellites spin? Icarus 58, 186–196 (1984).

    Article  ADS  Google Scholar 

  12. Helfenstein, P. & Parmentier, E. M. Patterns of fractures and tidal stresses due to non-synchronous rotation: Implications for Europa. Icarus 612, 175–184 (1985).

    Article  ADS  Google Scholar 

  13. McEwen, A. S. Tidal reorientation and the fracturing of Jupiter's moon Europa. Nature 321, 49–51 (1986).

    Article  ADS  Google Scholar 

  14. Pappalardo, R. T., Head, J. W., Greeley, R. & the Galileo Imaging Team. AEuropa ocean? The (circumstantial) geological evidence. in Proc. Europa Ocean Conf. 59–60 (1996).

  15. Lucchitta, B. L. & Soderblom, L. A. in Satellites of Jupiter (ed. Morrison, D.) 521–555 (Univ. Arizona Press, Tucson, 1982).

    Google Scholar 

  16. Pappalardo, R. T. & Coon, M. D. Asea analog for the surface of Europa. Lunar Planet. Sci. Conf. XXVII, 997–998 (1996).

    ADS  Google Scholar 

  17. Greeley, R.et al. Europa: Initial Galileo geological observations.(submitted).

  18. Pappalardo, R. T.et al. Geological evidence for solid-state convection in Europa's ice shell. Nature 391, 365–368 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Schenk, P. M. & McKinnon, W. B. Fault offsets and lateral crustal movement on Europa: Evidence for a mobile ice shell. Icarus 79, 75–100 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Pappalardo, R. T. & Sullivan, R. J. Evidence for separation across a gray band on Europa. Icarus 123, 557–567 (1996).

    Article  ADS  Google Scholar 

  21. Sullivan, R. & the Galileo Imaging Team. Galileo views of crustal disruption on Europa. Lunar Planet. Sci. Conf. XXVIII, 1395–1396 (1997).

    ADS  Google Scholar 

  22. Tufts, R. B., Greenberg, R., Sullivan, R., Pappalardo, R. & the Galileo Imaging Team. Lunar Planet Sci. Conf. XXVIII, 1455–1456 (1997).

    Google Scholar 

  23. Shoemaker, E. M. The age of Europa's surface.in Proc. Europa Ocean Conf. 65–66 (1996).

  24. Chapman, C. R. & the Galileo Imaging Team. Populations of small craters on Europa, GanymedeandCallisto:InitialGalileoimagingresutls. Lunar Planet. Sci. Conf. XXVIII, 217–218 (1997).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Carr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carr, M., Belton, M., Chapman, C. et al. Evidence for a subsurface ocean on Europa. Nature 391, 363–365 (1998). https://doi.org/10.1038/34857

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/34857

  • Springer Nature Limited

This article is cited by

Navigation