Skip to main content
Log in

Cumulative effect of intragenic amino-acid replacements on the thermostability of a protein

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The marginal net stability of a folded protein is thought to depend on a small difference between large, compensating individual forces. Therefore, the net free energy of stabilization of proteins is unexpectedly small (∼10 kcal mol−1)1. The contribution of individual forces such as hydrogen bonds and salt bridges to the stabilization is evaluated as 1–3 kcal mol−1 (refs 1,2), and several additional forces are thought to be sufficient to account for the extra thermostability of thermophilic proteins2–5. The native conformation of a protein is determined by the total number of interatomic interactions and hence by the amino-acid sequence6. If the few amino-acid residues that individually contribute to the stabilization could be implemented concurrently into the sequence, the multiple replacement would enhance the overall stability of the protein molecule. Here we report evidence to support this argument. Thermal inactivation kinetics and proteolytic resistance for mutants of a kanamycin nucleotidyltransferase reveal that a few intragenic amino-acid replacements stabilize the protein cumulatively. Our experiments not only demonstrate the feasiblity of elevating the thermostability of a protein but also lead to better understanding of the forces that are responsible for protein stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Creighton, T. E. Proteins: Structure and Molecular Properties Ch. 7 (Freeman, New York, 1983).

    Google Scholar 

  2. Perutz, M. F. Science 201, 1187–1191 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Pertuz, M. F. & Raidt, H. Nature 255, 256–259 (1975).

    Article  ADS  Google Scholar 

  4. Yutani, K., Ogasahara, K., Sugino, Y. & Matsushiro, A. Nature 267, 274–275 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Hawkes, R., Grütter, M. G. & Schellman, J. J. molec. Biol. 175, 195–212 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Anfinsen, C. B. Science 181, 223–230 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Sadaie, Y., Burtis, K. C. & Doi, R. H. J. Bact. 141, 1178–1182 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Matsumura, M., Katakura, Y., Imanaka, T. & Aiba, S. J. Bact. 160, 413–420 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Matsumura, M. & Aiba, S. J. biol. Chem. 260, 15298–15303 (1985).

    CAS  PubMed  Google Scholar 

  10. Matsumura, M., Kataoka, S. & Aiba, S. Molec. gen. Genet, (in the press).

  11. Zoller, M. J. & Smith, M. Meth. Enzym. 100, 468–500 (1983).

    Article  CAS  PubMed  Google Scholar 

  12. Yanisch-Perron, C., Vieira, J. & Messing, J. Gene 33, 103–119 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Heinrikson, R. L. Meth. Enzym. 47, 175–189 (1977).

    Article  CAS  PubMed  Google Scholar 

  14. Brock, T. D. Science 230, 132–138 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Grütter, M. G., Hawkes, R. B. & Matthews, B. W. Nature 277, 667–669 (1979).

    Article  ADS  PubMed  Google Scholar 

  16. Ulmer, K. M. Science 219, 666–671 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Alber, T. & Wozniak, J. A. Proc. natn. Acad. Sci. U.S.A. 82, 747–750 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H. & Roe, B. A. J. molec. Biol. 143, 161–178 (1980).

    Article  CAS  PubMed  Google Scholar 

  19. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  20. Messing, J. Meth. Enzym. 101, 20–78 (1983).

    Article  CAS  PubMed  Google Scholar 

  21. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumura, M., Yasumura, S. & Aiba, S. Cumulative effect of intragenic amino-acid replacements on the thermostability of a protein. Nature 323, 356–358 (1986). https://doi.org/10.1038/323356a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323356a0

  • Springer Nature Limited

This article is cited by

Navigation