Skip to main content
Log in

The nature of endothelium-derived vascular relaxant factor

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The existence of endothelium-derived vascular relaxant factor (EDRF) was postulated by Furchgott and colleagues1 when they observed that acetylcholine paradoxically relaxed preconstricted aortic strip preparations by an endothelium-dependent mechanism. This phenomenon has since been demonstrated in different blood vessels and mammalian species and it can be elicited by several other agents1–6. EDRF has been thought to be a humoral agent, a lipoxygenase derivative and possibly a free radical1. In the study reported here, by using aortic preparations from the rabbit, alone and in cascade experiments with isolated perfused coronary preparations, we demonstate definitively that EDRF is a humoral agent. It is released from unstimulated aortic preparations containing endothelium, its relaase can be stimulated for prolonged periods by acetylcholine, and it is not a lipoxygenase derivative or free radical but an unstable compound with a carbonyl group at or near its active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Furchgott, R. F. & Zawadzki, J. V. Nature 288, 373–376 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Furchgott, R. F. Circulation Res. 53, 557–573 (1983).

    Article  CAS  Google Scholar 

  3. Cherry, P. D., Furchgott, R. F., Zawadzki, J. V. & Jothianandan, D. Proc. natn. Acad. Sci. U.S.A. 79, 2106–2110 (1982).

    Article  ADS  CAS  Google Scholar 

  4. De Mey, J. G., Claeys, M. & Vanhoutte, P. M. J. Pharmac. exp. Ther. 222, 166–173 (1982).

    CAS  Google Scholar 

  5. Griffith, T. M., Hughes Edwards, D., Lewis, M. J. & Henderson, A. H. J. molec. cell. Cardiol. (in the press).

  6. Cocks, T. M. & Angus, J. A. Nature 305, 627–630 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Griffith, T. M., Henderson, A. H., Hughes Edwards, D. & Lewis, M. J. J. Physiol., Lond. (in the press).

  8. Hanna, J. G. The Chemistry of the Carbonyl Group, 390–392 (Interscience, London, 1966).

    Google Scholar 

  9. Gerrard, W. The Organic Chemistry of Boron, 132–160 (Academic, London, 1961).

    Google Scholar 

  10. Hajos, A. Complex Hydrides, 48–58 (Elsevier, Amsterdam, 1979).

    Google Scholar 

  11. Peach, M. E. The Chemistry of the Thiol Group, 765–771 (Wiley, London, 1974).

    Google Scholar 

  12. Jocelyn, P. C. Biochemistry of the SH Group, 55–58 (Academic, New York, 1972).

    Google Scholar 

  13. Geissman, T. A. Principles of Organic Chemistry, 667–670 (W. H. Freeman, San Francisco, 1968).

    Google Scholar 

  14. Robak, J. & Duniec, Z. Biochem. Pharmac. 31, 1955–1959 (1982).

    Article  CAS  Google Scholar 

  15. Freeman, B. A. & Crapo, J. D. Lab. Invest. 47, 412–426 (1982).

    CAS  PubMed  Google Scholar 

  16. Jocelyn, P. C. Biochemistry of the SH Group, 330–331 (Academic, New York, 1972).

    Google Scholar 

  17. Janzen, E. G. Free Radicals in Biology Vol. 4, 115–150 (Academic, London, 1980).

    Book  Google Scholar 

  18. Packer, J. E. et al. Biochem. biophys. Res. Commun. 98, 901–906 (1981).

    Article  CAS  Google Scholar 

  19. Bielski, B. J. H. & Shiue, G. G. Ciba Fdn Symp. 65, 43–56 (1979).

    CAS  Google Scholar 

  20. Foote, C. S. Free Radicals in Biology Vol. 2, 85–133 (Academic, London, 1976).

    Book  Google Scholar 

  21. Rosenblum, W. I. Am. J. Physiol. 245, H139–142 (1983).

    CAS  PubMed  Google Scholar 

  22. Klebanoff, S. J. & Rosen, H. Ciba Fdn Symp. 65, 263–284 (1979).

    CAS  Google Scholar 

  23. Fridovich, I. Science 201, 875–880 (1978).

    Article  ADS  CAS  Google Scholar 

  24. Yamamoto, S., Nakadate, T., Nakaki, T., Ishii, K. & Kato, R. Biochem. biophys. Res. Commun. 105, 759–765 (1982).

    Article  CAS  Google Scholar 

  25. Yamamoto, S., Nakadate, T., Nakaaki, T., Ishii, K. & Kato, R. Eur. J. Pharmac. 78, 225–227 (1982).

    Article  CAS  Google Scholar 

  26. Flower, R. J. & Blackwell, G. J. Nature 278, 456–459 (1979).

    Article  ADS  CAS  Google Scholar 

  27. Blackwell, G. J. et al. Nature 287, 147–149 (1980).

    Article  ADS  CAS  Google Scholar 

  28. Vallee, E., Gougat, J., Navarro, J. & Delahayes, J. F. J. Pharm. Pharmac. 31, 588–592 (1979).

    Article  CAS  Google Scholar 

  29. Blackwell, G. J. & Flower, R. J. Prostaglandins 16, 417–425 (1978).

    Article  CAS  Google Scholar 

  30. Hamberg, M. Biochim. biophys. Acta 431, 651–654 (1976).

    Article  CAS  Google Scholar 

  31. Baumann, J., Bruchhausen, F. V. & Wurm, G. Prostaglandins 20, 627–639 (1980).

    Article  CAS  Google Scholar 

  32. Singer, H. A. & Peach, M. J. J. Pharmac. exp. Ther. 226, 796–801 (1983).

    CAS  Google Scholar 

  33. Stanek, J., Cerny, M., Kocourek, J. & Pacak, J. The Monosaccharides, 660–662 (Academic, New York, 1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffith, T., Edwards, D., Lewis, M. et al. The nature of endothelium-derived vascular relaxant factor. Nature 308, 645–647 (1984). https://doi.org/10.1038/308645a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308645a0

  • Springer Nature Limited

This article is cited by

Navigation