Skip to main content

Advertisement

Log in

β-Resorcylidene aminoguanidine (RAG) dilates coronary arteries in an endothelium-independent manner

  • Original research article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

β-Resorcylidene aminoguanidine (RAG), a highly reactive derivative of aminoguanidine, possesses antithrombotic activity which involves the activation of the vascular COX-2/PGI2 pathway. This endothelium-dependent effect suggests that RAG may demonstrate vasomotor activity in arterial vessels. The aim of the present study was to investigate a possible vasoactive action of RAG in coronary arteries of rat heart.

Methods

Isolated rat hearts were perfused in the Langendorff model. To investigate the dose dependency of the effect of RAG on coronary flow, the hearts were perfused with RAG at increasing concentrations. Mechanisms of RAG-mediated vasodilation were subsequently tested using selective inhibitors of the endothelium-dependent and endothelium-independent mechanisms responsible for regulation of vascular tone.

Results

RAG dilated coronary arteries at concentrations above 10−5 mol/l. Inhibition of the endothelium-dependent mechanism of vasodilation by NG-nitro-l-arginine methyl ester, indomethacin and aminobenzotriazole did not affect RAG-mediated vasodilation. Other compounds also had no impact on the vasodilating effect of RAG: the NO-dependent guanylate cyclase inhibitor – 1H-[1,2,4]oxadiazolo[4,3]quinoxalin-1-one, the cAMP-dependent protein kinase inhibitor – PKAi, and the K+ channel blockers – glibenclamide, tetraethylammonium, charybdotoxin, and apamin.

Conclusions

RAG is a strong vasodilator that exerts its effect via endothelium-independent mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABT:

1-aminobenzotriazole

AG:

aminoguanidine

AGE:

advanced glycation endproduct

BAG:

2,5-dihydroxybenzylidene

BK:

bradykinin

CCB:

calcium channel blocker

CF:

coronary flow

cGMP:

cyclic guanosine monophosphate

ChTx:

charybdotoxin

COX-2:

cyclooxygenase

CYP:

cytochrome P450

DEA/NO:

diethylamine NONOate diethylammonium salt

EDHF:

endothelium-derived hyperpolarizing factor

eNOS:

endothelial nitric oxide synthase

GC:

guanylate cyclase

iNOS:

inducible nitric oxide synthase

KATP:

ATP-dependent K+ channel

K-H:

Krebs–Henseleit bicarbonate buffer

L-NAME:

NG-nitro-l-arginine methyl ester

NO:

nitric oxide

ODQ:

1H-[1,2,4]Oxadiazolo[4,3]quinoxalin-1-one

PAG:

pyridoxal aminoguanidine

PGI2:

prostacyclin

PKi:

protein kinase A inhibitor

RAG:

β-resorcylidene aminoguanidine

RAS-on:

resorcylidene semicarbazone

TEA:

tetraethylammonium

VSMCs:

vascular smooth muscle cells

References

  1. Cameron NE, Gibson TM, Nangle MR, Cotter MA. Inhibitors of advanced glycation end product formation and neurovascular dysfunction in experimental diabetes. Ann N Y Acad Sci 2005;1043:784–92.

    Article  CAS  Google Scholar 

  2. Taguchi T, Sugiura M, Hamada Y, Miwa I. Inhibition of advanced protein glycation by a Schiff base between aminoguanidine and pyridoxal. Eur J Pharmacol 1999;378(3):283–9.

    Article  CAS  Google Scholar 

  3. Thornalley PJ. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch Biochem Biophys 2003;419(1):31–40.

    Article  CAS  Google Scholar 

  4. Brooks BA, Heffernan S, Thomson S, McLennan SV, Twigg SM, Yue DK. The effects of diabetes and aminoguanidine treatment on endothelial function in a primate model of type 1 diabetes. Am J Primatol 2008;70(8):796–802.

    Article  CAS  Google Scholar 

  5. Nilsson BO. Biological effects of aminoguanidine: an update. Inflamm Res 1999;48(10):509–15.

    Article  CAS  Google Scholar 

  6. Jakus V, Hrnciarova M, Carsky J, Krahulec B, Rietbrock N. Inhibition of nonenzymatic protein glycation and lipid peroxidation by drugs with antioxidant activity. Life Sci 1999;65(18/19):1991–3.

    Article  Google Scholar 

  7. Korytar P, Sivonova M, Maruniakova A, Ulicna O, Kvasnicka P, Liptakova A, et al. Influence of 2,5-dihydroxybenzylidene aminoguanidine on lipid oxidative damage and on antioxidant levels in model diabetes mellitus. Pharmazie 2003;58(10):733–7.

    CAS  PubMed  Google Scholar 

  8. Taguchi T, Sugiura M, Hamada Y, Miwa I. In vivo formation of a Schiff base of aminoguanidine with pyridoxal phosphate. Biochem Pharmacol 1998;55(10):1667–71.

    Article  CAS  Google Scholar 

  9. Waczulikova I, Sikurova L, Bryszewska M, kawiecka R, Carsky J, Ulicna O. Impaired erythrocyte transmembrane potential in diabetes mellitus and its possible improvement by resorcylidene aminoguanidine. Bioelectrochemistry 2000;52(2):251–6.

    Article  CAS  Google Scholar 

  10. Vojtassak J, Blasko Sr M, Danisovic L, Carsky J, Durikova M, Repiska V, et al. In vitro evaluation of the cytotoxicity and genotoxicity of resorcylidene aminoguanidine in human diploid cells B-HNF-1. Folia Biol (Praha) 2008;54(4):109–14.

    CAS  Google Scholar 

  11. Watala C, Dobaczewski M, Kazmierczak P, Gebicki J, Nocun M, Zitnanova I, et al. Resorcylidene aminoguanidine induces antithrombotic action that is not dependent on its antiglycation activity. Vascul Pharmacol 2009;51(4):275–83.

    Article  CAS  Google Scholar 

  12. Carsky J, Lazarova M, Beno A. Study of resorcylidene aminoguanidine I. Spectral and acid-basic properties of the onium compounds. Acta Fac Rerum Nat Univ Comen Chim 1978;26:89–102.

    CAS  Google Scholar 

  13. Hovorka V, Holzbecher Z, Moravek J, Vlacil F, Zatka V. Asymmetric bicyclicinner complex compounds. Collect Czech Chem Commun 1953;18:370–8.

    Article  CAS  Google Scholar 

  14. Hovorka V, Holzbecher Z. Metal salts of salicylaldehyde-tiosemicarbasone. Chem Listy 1951;45:2–4.

    Google Scholar 

  15. Stankoviansky S, Carsky J. Metal salts of resorcylidene thiosemicarbasone. Chem Zvesti 1961;15:131–5.

    CAS  Google Scholar 

  16. Dobaczewski M, Kazmierczak P, Ravingerova T, Ulicna O, Nocun M, Waczulikova I, et al. Ex vivo detection of rat coronary endothelial dysfunction in diabetes mellitus – methodological considerations. Methods Find Exp Clin Pharmacol 2006;28(8):507–13.

    Article  CAS  Google Scholar 

  17. Liptakova A, Carsky J, Ulicna O, Vancova O, Bozek P, Durackova Z. Influence of beta-resorcylidene aminoguanidine on selected metabolic parameters and antioxidant status of rats with diabetes mellitus. Physiol Res 2002;51(3):277–84.

    CAS  PubMed  Google Scholar 

  18. Waczulikova I, Sikurova L, Carsky J. Fluidity gradient of erythrocyte membranes in diabetics: the effect of resorcylidene aminoguanidine. Bioelectrochemistry 2002;55(1/2):53–5.

    Article  Google Scholar 

  19. Rett K, Maerker E, Wicklmayr M, Dietze G, Mehnert H. The method of the isolated perfused rat heart using the Langendorff model in nutrition research. Infusionsther Klin Ernahr 1987;14(4):189–92.

    CAS  PubMed  Google Scholar 

  20. Ishikawa K, Calzavacca P, Bellomo R, Bailey M, May CN. Effect of selective inhibition of renal inducible nitric oxide synthase on renal blood flow and function in experimental hyperdynamic sepsis. Crit Care Med 2012;40(8):2368–75.

    Article  CAS  Google Scholar 

  21. Oak JH, Youn JY, Cai H. Aminoguanidine inhibits aortic hydrogen peroxide production, VSMC NOX activity and hypercontractility in diabetic mice. Cardiovasc Diabetol 2009;8:65–71.

    Article  Google Scholar 

  22. Przygodzki T, Talar M, Watala C. COX-2-derived prostaglandins do not contribute to coronary flow regulation in diabetic rats: distinct secretion patterns of PGI2 and PGE2. Eur J Pharmacol 2013;700(1–3):86–92.

    Article  CAS  Google Scholar 

  23. Webb RC. Smooth muscle contraction and relaxation. Adv Physiol Educ 2003;27(1–4):201–6.

    Article  Google Scholar 

  24. Waczulikova I, Ziegelhoffer A, Orszaghova Z, Carsky J. Fluidising effect of resorcylidene aminoguanidine on sarcolemmal membranes in streptozotocin-diabetic rats: blunted adaptation of diabetic myocardium to Ca2+ overload. J Physiol Pharmacol 2002;53(4 Pt 2):727–39.

  25. Waczulikova I, Sikurova L, Carsky J, Strbova L, Krahulec B. Decreased fluidity of isolated erythrocyte membranes in type 1 and type 2 diabetes. The effect of resorcylidene aminoguanidine. Gen Physiol Biophys 2000;19(4):381–92.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr A. Kazmierczak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazmierczak, P.A., Dobaczewski, M.P., Przygodzki, T. et al. β-Resorcylidene aminoguanidine (RAG) dilates coronary arteries in an endothelium-independent manner. Pharmacol. Rep 67, 631–635 (2015). https://doi.org/10.1016/j.pharep.2015.01.003

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2015.01.003

Keywords

Navigation