Skip to main content
Log in

Tissue Culture Studies of Tomato (Lycopersicon esculentum)

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Tomato is a major vegetable crop that has achieved tremendous popularity over the last century. It is grown in almost every country of the world. Development of protocols for in vitro selection can provide new advances for the production of stress tolerant cultivars. Techniques have been optimised for the production of haploids and somatic hybrids. Attempts have also been made to transfer the higher regenerative ability of wild varieties to cultivated tomatoes. Although, some information is available on the morphogenesis of tomato, the techniques have not been developed to a level at which they can be utilised in large-scale multiplication of commercially important cultivars. The morphogenesis response seems to be highly dependent PGRs used in the media, which is again cultivar and genotypic specific. Somatic embryogenesis in tomato is still at its infancy, and efficient procedures for large-scale production via somatic embryogenesis are yet to be developed. Genetic stability of the tissue culture raised tomato plants also needs to be addressed. The use of a combination of molecular and conventional breeding techniques could be the option for the development of cultivars resistant to biotic and abiotic stresses. This paper reviews the advances made in various aspects of tissue culture in tomato. It also discusses the issues that still need to be addressed to utilise the full potential of plant tissue culture techniques in genetic improvement and mass propagation of tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfonso A & Alonso RM (1981) Effect of NAA and BA on root formation in tomato shoots cultured in vitro. Ciencias de la Agricultura: 41-45

  • Ancora G & Sree Ramulu K (1981) Plant regeneration from in vitro cultures of stem internodes in self-incompatible triploid Lycopersicon peruvianum Mill. and cytogenetic analysis of regenerated plants. Plant Sci. Lett. 22: 197-204

    Google Scholar 

  • Applewhite PB, Kaur-Sawhney R & Galston AW (1994) Isatin as an auxin source favoring floral and vegetative shoot regeneration from calli produced by thin layer explants of tomato pedicel. Plant Growth Regul 15: 17-21

    Article  CAS  PubMed  Google Scholar 

  • Asakura N, Misoo S, Kamijima O & Sawano M (1995) High frequency regeneration of diploids from apical end of cultured hypocotyl tissue in tomato. Breeding Sci. 45: 455-459

    Google Scholar 

  • Barden KA, Smith SS & Murakishi HH (1986) Regeneration and screening of tomato somaclones for resistance to tobacco mosaic virus. Plant Sci. 45: 209-213

    Article  Google Scholar 

  • Behki RM & Lesley SM (1980) Shoot regeneration from leaf callus of Lycopersicon esculentum. Z. Pflanzenphysiol. 98: 83-87

    CAS  Google Scholar 

  • Bennici A & Cionini PG (1979) Cytokinins and in vitro development of Phaseolus coccineus embryos. Planta 147: 27-29

    Article  CAS  Google Scholar 

  • Bentz SE, Parliman BJ, Talbott HJ & L AW (1988) Factors affecting in vitro propagation of Yucca glauca. Plant Cell Tiss. Org. Cult. 14: 111-120

    Article  Google Scholar 

  • Bergmann L (1967) Wachstum gruner Suspensionskulturen von Nicotiana tabacum Var. "samsun'mit CO2 als Kohlenstoffquelle. Planta 74: 243-249

    Article  CAS  Google Scholar 

  • Bertram L & Lercari B (2000) Phytochrome A and phytochrome B1 control the acquisition of competence for shoot regeneration in tomato hypocotyl. Plant Cell Rep. 19: 604-609

    Article  CAS  Google Scholar 

  • Bhatia P (2003) Optimisation of physical, chemical and biological factors for in vitro micropropagation through direct regeneration, axillary branching and somatic embryogenesis methods for the ‘Red Coat’ cultivar of tomato (Lycopersicon esculentum Mill.). Doctoral thesis. Primary industries research centre, Central Queensland University, Rockhampton, Australia

    Google Scholar 

  • Block GB, Patterson B & Subar A (1992) Fruit, vegetables and cancer prevention: a review of the epidemiological evidence. Nutr. Cancer 18: 1-29

    CAS  PubMed  Google Scholar 

  • Bose TK, Mukherjee TP & Basu RN (1977) Effects of ethylene and acetylene on the regeneration of adventitious roots. Indian J. Plant Physiol. 20: 134-139

    CAS  Google Scholar 

  • Branca C, Torelli A & Bassi M (1990) Effects of benzisoxazole and benzisothiazole on tomato plant regeneration in vitro. Plant Cell Tiss. Org. Cult. 21: 17-19

    Article  CAS  Google Scholar 

  • Branca C, Torelli A, Fermi P, Altamura MM & Bassi M (1994) Early phases in in vitro culture of tomato cotyledons: starch accumulation and protein pattern in relation to the hormonal treatment. Protoplasma 182: 1-2

    Article  Google Scholar 

  • Brand MH & Lineberger RD (1988) In vitro propagation of Halesia carolina L. and the influence of explanation timing on initial shoot formation on mature phase leaves and petioles of Liquidambar styraciflua. Plant Sci. 57: 173-179

    Article  CAS  Google Scholar 

  • Browning G, Ognjanov V, Passey AJ & James DJ (1987) Multiple shoot and root regeneration from pear embryo cotyledon explant in vitro. J. Hort. Sci. 62: 305-311

    Google Scholar 

  • Buiatti M, Marcheschi G, Tognoni F, Paola ML, di Grenci FC & Martini G (1985) Genetic variability induced by tissue culture in the tomato (Lycopersicon esculentum). Z. Pflanzenzucht. 94: 162-165

    Google Scholar 

  • Bulk RW, van den Loffler HJM, Lindhout WH & Koornneef M (1990) Somaclonal variation in tomato: effect of explant source and a comparison with chemical mutagenesis. Theor. Appl. Genet. 80: 817-825

    Article  Google Scholar 

  • Butenko RG & Kuchko AA (1978) Cultivation and Plant Regeneration Studies on Isolated Protoplasts from Two Potato Species. In: 4th International Congress Plant Tissue Cell Culture, (p. 62)

  • Callow P, Haghighi K, Giroux M & Hancock J (1988) In vitro shoot regeneration on leaf tissue from micropropagated high bush blueberry. HortScience 23: 807-808

    Google Scholar 

  • Cano EA, Moreno V, Romero M & Bolarin MC (1990) The role of culture medium, explant source and genotype on callus growth in cultivated and wild tomato species and interspecific hybrids. Proceedings of the XIth Eucarpia meeting on tomato genetics, (pp. 167-172)

  • Carlson C, Conviser L & Preece J (1979) Programming stock plants for tissue culture success. In: 6th Annual Meeting Plant Regulator Work Group, Las Vegas Nevada, (pp. 197-204)

  • Cassells A (1979) The effect of 2,3,5-triiodobenzoic acid on calogenesis in callus cultures of tomato and pelargonium. Physiol. Plant 37: 239-246

    Google Scholar 

  • Chandel G & Katiyar SK (2000) Organogenesis and somatic embryogenesis in tomato (Lycopersicon esculantum Mill.). Adv. Plant Sci. 13: 11-17

    Google Scholar 

  • Chandra R, Khetrapal S, Patil P, Gupta N & Polisetty R (1995) In vitro regeneration of hybrid and non-hybrid tomato (Lycopersicon esculentum L.). Indian J. Plant Physiol. 38: 139-142

    Google Scholar 

  • Chen LZ & Adachi T (1994) Plant regeneration via somatic embryogenesis from cotyledon protoplasts of tomato (Lycopersicon esculentum Mill). Breeding Sci. 44: 337-338

    Google Scholar 

  • Chen H, Zhang J, Zhuang T & Zhou G (1999) Studies on optimum hormone levels for tomato plant regeneration from hypocotyl explants cultured in vitro. Acta Agric. Shanghai 15: 26-29

    Google Scholar 

  • Chin CK & Weston GD (1975) The relationship between invertase activity in excised Lycopersicon esculentum roots. Plant Sci. Lett. 4: 25-30

    CAS  Google Scholar 

  • Chlyah A & Taarji H (1984) Androgenesis in tomato. Plant tissue and cell culture application to crop improvement. Czechoslovak Ac: 241-242

  • Coleman WK & Greyson RI (1977) Promotion of root initiation by gibberellic acid in leaf discs of tomato (Lycopersicon esculentum) cultured in vitro. New Phytol. 78: 47-54

    CAS  Google Scholar 

  • Coleman WK, Huxter TJ, Reid DM & Thorpe TA (1980) Ethylene as an endogenous inhibitor of root regeneration in tomato leaf discs cultured in vitro. Physiol. Plant 48: 519-525

    CAS  Google Scholar 

  • Compton ME & Veilleux RE (1988) Morphogenesis in tomato thin cell layers. HortScience 23: 754

    Google Scholar 

  • Compton ME & Veilleux RE (1991) Shoot, root and flower morphogenesis on tomato inflorescence explants. Plant Cell Tiss. Org. Cult. 24: 223-231

    Article  CAS  Google Scholar 

  • Costa GM, Nogueira FTS, Otoni WC & Brommonschenkel SH (2000a) In vitro regeneration of processing tomato (Lycopersicon esculentum Mill.) ‘IPA-5’ and ‘IPA-6’. Ciencia e Agrotecnologia 24: 671-678

    Google Scholar 

  • Costa MGC, Nogueira FTS, Figueira ML, Otoni WC, Brommonschenkel SH & Cecon PR (2000b) Influence of the antibiotic timentin on plant regeneration of tomato (Lycopersicon esculentum Mill.) cultivars. Plant Cell Rep. 19: 327-332

    Article  CAS  Google Scholar 

  • Dai CX, Mertz D & Lambeth VN (1988) Effect of seedling age, orientation and genotype of hypocotyl and cotyledon explants of tomato on shoot and root regeneration. Genet. Manip. Crops Newslett. 4: 26-35

    Google Scholar 

  • Danek-Jezik K & Schmidt J (1979) Investigations on callus development and regeneration of Lycopersicon esculentum. Phyton 19: 175-179

    CAS  Google Scholar 

  • Davis DG, Breiland KA, Frear DS & Secor GA (1994) Callus initiation and regeneration of tomato (Lycopersicon esculentum) cultivars with different sensitivities to metribuzin. Plant Growth Regul. Soc. Am. Quart. 22: 65-73

    CAS  Google Scholar 

  • DeLanghe F & DeBruijne E (1976) Continuous propagation of tomato plants by means of callus culture. Science Hort. 4: 221-227

    CAS  Google Scholar 

  • Dhruva B, Ramakrishnan T & Vaidyanathan CS (1978) Regeneration of hybrid tomato plants from leaf callus. Curr. Science 47: 458-460

    Google Scholar 

  • Duzyaman E, Tanrisever A & Gunver G (1994) Comparative studies on regeneration of different tissues of tomato in vitro. Acta Horti. 235-242

  • Dwivedi K, Srivastava P, Verma HN & Chaturvedi HC (1990) Direct regeneration of shoots from leaf segments of tomato (Lycopersicon esculentum) cultured in vitro and production of plants. Indian J. Exp. Biol. 28: 32-35

    Google Scholar 

  • El-Farash EM, Abdalla HI, Taghian AS & Ahmad MH (1993) Genotype, explant age and explant type as effecting callus and shoot regeneration in tomato. Assiut J. Agri. Sci. 24: 3-14

    Google Scholar 

  • Evans DA (1989) Somaclonal variation - genetic basis and breeding applications. Trends Genet. 5: 46-50

    Article  CAS  PubMed  Google Scholar 

  • Evans DA & Sharp WR (1983) Single gene mutations in tomato plants regenerated from tissue culture. Science 221: 949-951

    Google Scholar 

  • FAO Statistical Database 2003. FAOSTAT Agriculture data, URL http://apps.fao.org/page/collections?subset=agriculture, date of access 13 June 2003

  • Fari M, Szasz A, Mityko J, Nagy I, Csanyi M & Andrasfalvy A (1992) Induced organogenesis via the seedling decapitation method (SDM) in three solanaceous vegetable species. Capsicum Newsletter: 243-248

  • Faria RT & Illg RD (1996) Inheritance of in vitro plant regeneration ability in the tomato. Braz. J. Genet. 19: 113-116

    Google Scholar 

  • Faria RTd, Destro D, Bespalhok Filho JC & Illg RD (2002) Introgression of in vitro regeneration capability of Lycopersicon pimpinellifolium Mill. into recalcitrant tomato cultivars. Euphytica 124: 59-63

    Google Scholar 

  • Felle H (1988) Cytoplasmic free calcium in Riccia fluitans L. and Zea mays L.: interaction of Ca2+ and pH. Planta 176: 248-255

    Article  CAS  Google Scholar 

  • Fillatti JJ, Kiser J, Rose R & Comai L (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Bio Technol. 5: 726-730

    CAS  Google Scholar 

  • Fosket DE & Radin DN (1983) Induction of carotenogenesis in cultured cells of Lycopersicon esculentum. Plant Sci. Lett. 30: 165-175

    CAS  Google Scholar 

  • Frankenberger EA, Hasegawa PM & Tigchelaar EC (1981a) Influence of environment and developmental state on the shoot-forming capacity of tomato genotypes. Z. Pflanzenphysiol. 102: 221-232

    Google Scholar 

  • Frankenberger EA, Hasegawa PM & Tigchelaar EC (1981b) Diallel analysis of shoot-forming capacity among selected tomato genotypes. Z. Pflanzenphysiol. 102: 233-242

    Google Scholar 

  • Frary A & Earle ED (1996) An examination of factors affecting the efficiency of Agrobacterium-mediated transformation of tomato. Plant Cell Rep. 16: 235-240

    CAS  Google Scholar 

  • Fujimura T & Komamine A (1975) Effects of various growth regulators on the embryogenesis in a carrot cell suspension culture. Plant Sci. Lett. 5: 359-364

    CAS  Google Scholar 

  • Gamborg O, Miller R & Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell. Res. 50: 151-168

    Article  CAS  PubMed  Google Scholar 

  • Geetha N, Venkatachalam P, Reddy PS & Rajaseger G (1998) In vitro plant regeneration from leaf callus cultures of tomato (Lycopersicon esculentum Mill.). Adv. Plant Sci. 11: 253-257

    Google Scholar 

  • George EF (1996) The components of culture media. In: George E (eds) Plant Propagation by Tissue Culture, 1 (pp. 274-338). Exegetics Ltd., UK

    Google Scholar 

  • Gerster H (1997) The potential role of lycopene for human health. J. Am. College Nutr. 16: 109-126

    CAS  Google Scholar 

  • Gill R, Malik KA, Sanago MHM & Saxena PK (1995) Somatic embryogenesis and plant regeneration from seedling cultures of tomato (Lycopersicon esculentum Mill.). J. Plant Physiol. 147: 273-276

    CAS  Google Scholar 

  • Gorbatenko IY, Zoz NN, Kuklenko YA, Poleshchuk SV, Sushkova ZV & Serova RY (1994) Use of microdoses of biologically active substances in nutrient media in vitro. Russ. Agric. Sci. 21-23

  • Gresshoff PM & Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum(tomato). Planta 107: 161-170

    Article  Google Scholar 

  • Grout BWW, Westcott RJ & Henshaw GG (1978) Survival of shoot meristems of tomato seedlings frozen in liquid nitrogen. Cryobiology 15: 478-483

    Article  CAS  PubMed  Google Scholar 

  • Gunay AL & Rao PS (1980) In vitro propagation of hybrid tomato plants (Lycopersicon esculentum L.) using hypocotyl and cotyledon explants. Ann. Bot. 45: 205-207

    Google Scholar 

  • Hamza S & Chupeau Y (1993) Re-evaluation of conditions for plant regeneration and Agrobacterium-mediated transformation from tomato (Lycopersicon esculentum). J. Exp. Bot. 44: 1837-1845

    CAS  Google Scholar 

  • Handa AK, Bressan RA, Handa S & Hasegawa PM (1982a) Characteristics of cultured tomato cells after prolonged exposure to medium containing polyethylene glycol [PEG]. Plant Physiol. 69: 514-521

    CAS  Google Scholar 

  • Handa AK, Bressan RA, Park ML & Hasegawa PM (1982b) Use of plant cell cultures to study production and phytotoxicity of Alternaria solani toxin(s). Physiol. Plant Pathol. 21: 295-309

    CAS  Google Scholar 

  • Handa AK, Bressan RA, Handa S & Hasegawa PM (1983a) Clonal variation for tolerance to polyethylene glycon-induced water stress in cultured tomato cells. Plant Physiol. 72: 645-653

    Google Scholar 

  • Handa S, Bressan RA, Handa AK, Carpita NC & Hasegawa PM (1983b) Solutes contributing to osmotic adjustment in cultured plant cells adapted to water stress. Plant Physiol. 73: 834-843

    CAS  Google Scholar 

  • Handa S, Handa AK, Hasegawa PM & Bressan RA (1986) Proline accumulation and the adaptation of cultured plant cells to water stress. Plant Physiol. 80: 938-945

    CAS  Google Scholar 

  • Hobson G & Davies J (1971). The Tomato. In: Hulme A (eds) The Biochemistry of Fruits and Their Products (pp. 337-482). Academic Press, New York, London

    Google Scholar 

  • Hussey G (1971) In vitro growth of vegetative tomato shoot apices. J. Exp. Bot. 22: 688-701

    Google Scholar 

  • Ichimura K & Oda M (1998) Stimulation of phenotypically normal shoot regeneration of tomato (Lycopersicon esculentum Mill.) by commercial filter paper extract. J. Jap. Soc. Hort. Sci. 67: 378-380

    Google Scholar 

  • Imanishi S, Masataka S & Hiura I (1976) Organogenesis from long term callus culture from hypocotyle in Lycopersicon esculentum L. Agric. Sci. 7: 439-450

    Google Scholar 

  • Izadpanah M & Khosh-Khui M (1992) Comparisons of in vitro propagation of tomato cultivars. Iran Agric. Res. 8: 37-47

    Google Scholar 

  • Izvorska ND, Vassilev GN & Lilov DT (1982) Influence of the cytokinins p-allyl and phenylthioureidosalicylic acids on the growth and morphogenesis of callus tissues from vine and tomato. Comptes Rendus de L'Academie Bulgare des Sci. 35: 387-390

    CAS  Google Scholar 

  • Jain SM, Shahin EA & Sun S (1985) Somatic hybridization between atrazine resistant Solanum nigrum and tomato. In vitro21: 25A

    Google Scholar 

  • Jain SM, Shahin EA & Sun S (1988) Interspecific protoplast fusion for the transfer of atrazine resistance from Solanum nigrum to tomato (Lycopersicon esculentum L.). Plant Cell Tiss. Org. Cult. 12: 189-192

    Article  CAS  Google Scholar 

  • Janick J (1993) Genetically engineered high solid tomato. In New Crops News, Spring. http://www.hort.purdue.edu/newcrop/NewCropsNews/93-3-1/tomato.html. Date of access 20 June 2003

  • Jawahar M, Mohamed SV & Jayabalan N (1997) In vitro callus culture and plant regeneration from different explants of Lycopersicon esculentum Mill. J. Phytol. Res. 10: 75-78

    Google Scholar 

  • Kalloo G (1991). Introduction. In: Kalloo G (eds) Monographs on Theoretical and Applied Genetics 14, Genetic Improvement of Tomato (pp. 1-9). Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Kaparakis G & Alderson PG (2002) Influence of high concentrations of cytokinins on the production of somatic embryos by germinating seeds of tomato, aubergine and pepper. J. Hort. Sci. Biotechnol. 77: 186-190

    CAS  Google Scholar 

  • Kartha KK, Gamborg OL, Shyluk JP & Constabel F (1976) Morphogenetic investigations on in vitro leaf culture of tomato (Lycopersicon esculentum Mill. cv. Starfire) and high frequency plant regeneration. Z. Pflanzenphysiol. 77: 292-301

    Google Scholar 

  • Kartha KK, Champoux S, Gamborg OL & Pahl K (1977) In vitro propagation of tomato by shoot apical meristem culture. J. Am. Soc. Hort. Sci. 102: 346-349

    CAS  Google Scholar 

  • Kaul M (1991) Reproductive biology of tomato. In: Kalloo G (eds) Monographs on Theoretical and Applied Genetics 14, Genetic Improvement of Tomato (pp. 39-43). Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Koornneef M, Bade J, Hanhart C, Horsman K, Schel J, Soppe W, Verkerk R & Zabel P (1993) Characterization and mapping of a gene controlling shoot regeneration in tomato. Plant J. 3: 131-141

    CAS  Google Scholar 

  • Korban SS & Skirvin RM (1985) In vitro shoot regeneration from an intact and a sectioned embryo-axis of apple seeds. Plant Sci. 39: 61-66

    Article  Google Scholar 

  • Kubota C, Kakizaki N, Kozai T, Kasahara K & Nemoto J (2001) Growth and net photosynthetic rate of tomato plantlets during photoautotrophic and photomixotrophic micropropagation. HortScience 36: 49-52

    CAS  Google Scholar 

  • Kurkdjian A & Guern J (1989) Intracellular pH: measurement and importance in cell activity. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40: 271-303

    CAS  Google Scholar 

  • Kurtz SM & Lineberger RD (1983) Genotypic differences in morphogenic capacity of cultured leaf explants of tomato. J. Am. Soc. Hort. Sci. 108: 710-714

    CAS  Google Scholar 

  • Le VQ, Samson G & Desjardins Y (2001) Opposite effects of exogenous sucrose on growth, photosynthesis and carbon metabolism of in vitro plantlets of tomato (L. esculentum Mill.) grown under two levels of irradiances and CO2 concentration. J. Plant Physiol. 158: 599-605

    CAS  Google Scholar 

  • Lech M, Miczynski K & Pindel A (1996) Comparison of regeneration potentials in tissue cultures of primitive and cultivated tomato species (Lycopersicon sp.). Acta Soc. Bot. Poloniae 65: 53-56

    Google Scholar 

  • Lercari B, Manetti A & Bertram L (2002) Temporal and spatial pattern of light-dependent acquisition of competence for shoot formation in tomato hypocotyl. I Light pulse conditions. Adv. Hort. Sci. 16: 17-24

    Google Scholar 

  • Levenko BA & Kiforak OV (1975) A study of the mitotic activity and ploidy of the cells in callus tissue of tomato treated with phytohemaglutinin. Genetika 11: 167-170

    CAS  Google Scholar 

  • Levenko BA, Kunakh VA, Yurkova GN, Legeida VS, Kiforak OV & Alpatova LK (1977) Formation of strains of plant callus tissue during prolonged culture. In vitro. 292: 82

    Google Scholar 

  • Linsmaier E & Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant 18: 100-127

    CAS  Google Scholar 

  • Locy RD (1995) Selection of tomato tissue cultures able to grow on ribose as the sole carbon source. Plant Cell Rep. 14: 777-780

    Article  CAS  Google Scholar 

  • Lu W & Liang B (1994) In vitro induction of regeneration of fruit-like structure in Lycopersicon esculentum Mill. Acta Bot. Sinica 36: 405-410

    Google Scholar 

  • Lukyanenko AN (1991) Disease resistance in tomato. In: Kalloo G (eds) Monographs on Theoretical and Applied Genetics 14, Genetic Improvement of Tomato (pp. 99-119). Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Mandal AB (1999) Efficient somaculture system and exploitation of somaclonal variation for bacterial wilt resistance in tomato. Indian J. Hort. 56: 321-327

    Google Scholar 

  • Mariotti D & Arcioni S (1983) Coronilla varia L. (Crown vetch): plant regeneration through somatic embryogenesis. Plant Cell Tiss. Org. Cult. 2: 103-110

    Article  Google Scholar 

  • Mauseth JD & Halperin W (1975) Hormonal control of organogenesis in Opuntia polyacantha(Cactaceae). Am. J. Bot. 62: 869-877

    CAS  Google Scholar 

  • Mensuali-Sodi A, Panizza M & Tognoni F (1995) Endogenous ethylene requirement for adventitious root induction and growth in tomato cotyledons and lavandin microcuttings in vitro. Plant Growth Regul. 17: 205-212

    Article  CAS  Google Scholar 

  • Miller C, Skoog F, Okumura Fv, Saltza M & Strong F (1956) Isolation, structure and synthesis of kinetin, a substance promoting cell division. J. Am. Chem. Soc. 78: 1375-1380

    CAS  Google Scholar 

  • Molnar SJ (1988) Nutrient modifications for improved growth of Brassica nigra cell suspension cultures. Plant Cell Tiss. Org. Cult. 15: 257-267

    Google Scholar 

  • Muhlbach HP (1980) Different regeneration potentials of mesophyll protoplasts from cultivated and a wild species of tomato. Planta 148: 89-96

    Google Scholar 

  • Murashige T, Serpa M & Jones JB (1974) Clonal multiplication of Gerbera through tissue culture. HortScience 9: 175-180

    CAS  Google Scholar 

  • Nambisan P, Chopra VL & Mohapatra T (1992) DNA polymorphism in Cab locus of tomato induced by tissue culture. Indian J. Exp. Biol. 30: 178-180

    CAS  PubMed  Google Scholar 

  • Negi PS & Joshi MC (1994) Growing hybrid tomato in hills through tissue culture technique. Madras Agric. J. 81: 649-650

    Google Scholar 

  • Newman PO, Krishnaraj S & Saxena PK (1996) Regeneration of tomato (Lycopersicon esculentum Mill.): somatic embryogenesis and shoot organogenesis from hypocotyl explants induced with 6-benzyladenine. Int. J. Plant Sci. 157: 554-560

    Article  CAS  Google Scholar 

  • Nguyen HM, Balashova NN, Kintya PK, Smirnov VA & Kieu TT (1992) Effects of steroid glycosides on tomato tissue culture. Sel'Skokhozyaistvennaya Biologiya 57-63

  • Niederwieser JG & Vcelar BM (1990) Regeneration of Lachenalia species from leaf explants. HortScience 25: 684-687

    Google Scholar 

  • Novak FJ & Maskova I (1979) Apical shoot tip culture of tomato. Sci. Hort. 10: 337-344

    CAS  Google Scholar 

  • Novak FJ, Zadina J, Horackova V & Maskova I (1980) The effect of growth regulators on meristem tip development and in vitro multiplication of Solanum tuberosum L. plants. Potato Res. 23: 155-166

    CAS  Google Scholar 

  • Ohki S, Bigot C & Mousseau J (1978) Analysis of shootforming capacity in vitro in two lines of tomato (Lycopersicon esculentum Mill.) and their hybrids. Plant Cell Physiol. 19: 27-42

    CAS  Google Scholar 

  • Ovecka M, Bobak M & Samaj J (2000) A comparative structural analysis of direct and indirect shoot regeneration of Papaver somniferum L. in vitro. J. Plant Physiol. 157: 281-289

    CAS  Google Scholar 

  • Padliskikh VL & Yarmishin AP (1990) Features of microclonal propagation in tomato. Vestsi Akademii Navuk BSS, Reryya Biyalagichnykh Navuk 6: 52-54

    Google Scholar 

  • Padmanabhan V, Paddock EF & Sharp WR (1974) Plantlet formation from in vitro from Lycopersicon esculentum leaf callus. Can. J. Bot. 52: 1429-1432

    Google Scholar 

  • Park YG & Son SH (1988) In vitro organogenesis and somaticembryogenesis from punctured leaf of Populus nigra*P. maximowiezii. Plant Cell Tiss. Org. Cult. 1595-1105

  • Park J, Yi B & Lee C (2001) Effects of plant growth regulators, bud length, donor plant age, low temperature treatment and glucose concentration on callus induction and plant regeneration in anther culture of cherry tomato ‘Mini-carol’. J. Korea Soc. Hort. Sci. 42: 32-37

    CAS  Google Scholar 

  • Peres LEP, Morgante PG, Vecchi C, Kraus JE & Sluys MAv (2001) Shoot regeneration capacity from roots and transgenic hairy roots of tomato cultivars and wild related species. Plant Cell Tiss. Org. Cult. 65: 37-44

    Article  CAS  Google Scholar 

  • Plastira VA & Perdikaris AK (1997) Effect of genotype and explant type in regeneration frequency of tomato in vitro. Acta Horti. 231-234

  • Poleschuk SV & Gorbatenko IY (1995) Effect of the synthetic antioxidant phenoxane on the regeneration and ontogeny of the tomato in vitro. Russ. Agric. Sci. 15-17

  • Polevaya VS, Yashina SG & Oleinikova GA (1988) Production and propagation in vitro of tomato regenerates from isolated meristems. Biologiya kul'tiviruemykh kletok i biotekhnologiya 1: 157-158

    Google Scholar 

  • Pongtongkam P, Ratisoontorn P, Suputtitada S, Piyachoknagul S, Ngernsiri L & Thonpan A (1993) Tomato propagation by tissue culture. Kasetsart J. 27: 269-277

    Google Scholar 

  • Pugliesi C, Cionini G, Bertram L & Lercari B (1999) A histological study of light-dependent shoot regeneration in hypocotyl explants of tomato cultured in vitro. Adv. Hort. Sci. 13: 168-172

    Google Scholar 

  • Quak F (1977) Meristem Culture and Virus-free Plants (eds) Applied and fundamental aspects of plant cell and organ culture, tissue (pp. 598-615). Springer-Verlag, Berlin

    Google Scholar 

  • Rahman MM & Kaul K (1989) Differentiation of sodium chloride tolerant cell lines of tomato (Lycopersicon esculentum Mill.) cv. Jet Star. J. Plant Physiol. 133: 710-712

    CAS  Google Scholar 

  • Ramiah M & Rajappan K (1996) Direct shoot regeneration from excised cotyledonary leaf of tomato. South Indian Hort. 44: 101-102

    Google Scholar 

  • Rao A & Agarwal S (2000) Role of antioxidant lycopene in cancer and heart disease. J. Am. College Nutr. 19: 563-569

    CAS  Google Scholar 

  • Rao GSRL, Willison JHM, Ratnayake WMN & Ackman RG (1985) Phenolics of suberized envelopes generated by isolated tomato locule protoplasts. Phytochemistry 24: 2127-2128

    Article  CAS  Google Scholar 

  • Redenbaugh MK, Slade D & Fujii J (1989) Desiccated analogs of botanic seed. US Patent 762: 111

    Google Scholar 

  • Reynolds JF, Bieber NE & Sun EL (1982) Environmental, genotype and pretreatment influences on regeneration of tomato in vitro. In vitro 18: 318

    Google Scholar 

  • Rhodes D (2002) Tomatoes - Notes (Purdue University). http://www.hort.purdue.edu/rhodcv/hort410/tomat/to00001.htm

  • Romer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W & Bramley PM (2000) Elevation of the provitamin A content of transgenic tomato plants. Nature Biotechnol. 18: 666-669

    CAS  Google Scholar 

  • Santana N & Ramirez AL (1989) Influence of NAA, IAA and kinetin on morphogenesis of leaf tissue of tomato (Lycopersicon esculentum, Mill.) cultured in vitro. Cultivos Tropicales 11: 63-67

    Google Scholar 

  • Schnapp SR & Preece JE (1986) In vitro growth reduction of tomato and carnation microplants. Plant Cell Tiss. Org. Cult. 6: 3-8

    Article  CAS  Google Scholar 

  • Schutze R & Wieczorrek G (1987) Investigations into tomato tissue cultures. I. Shoot regeneration in primary explants of tomato. Arch. Zuchtungsforschung 17: 3-15

    Google Scholar 

  • Selvi DT & Khader MA (1993) In vitro morphogenetic capacity of tomato (Lycopersicon esculentum Mill.) var. PKM.1. South Indian Hort. 41: 251-258

    Google Scholar 

  • Shahin EA (1985) Totipotency of tomato protoplasts. Theor. Appl. Genet. 69: 235-240

    Article  CAS  Google Scholar 

  • Shahin EA & Spivey R (1986) A single dominant gene for Fusarium wilt resistance in protoplast-derived tomato plants. Theor. Appl. Genet. 73: 164-169

    Article  Google Scholar 

  • Shorning BY, Poleshchuk SV, Gorbatenko IY & Vanyushin BF (1999) Effect of antioxidants on plant growth and development. Biol. Bull. 26: 23-29

    Google Scholar 

  • Shtereva LA, Zagorska NA, Dimitrov BD, Kruleva MM & Oanh HK (1998) Induced androgenesis in tomato (Lycopersicon esculentum Mill.). II. Factors affecting induction of androgenesis. Plant Cell Rep. 18: 312-317

    Article  CAS  Google Scholar 

  • Sinha AK & Roitsch T (2001) Effect of different sugars on photosynthesis and chlorophyll fluorescence in photoautotrophic tomato suspension cell cultures. Photosynthetica 39: 611-614

    Article  CAS  Google Scholar 

  • Sink KC, Handley LW, Niedz RP & Moore PP (1986) Protoplast culture and use of regeneration attributes to select tomato plants. Genet. Manip. 405-413

  • Smirnov VA & Smirnova VV (1981) Prospects of using tissue culture in tomato in breeding forms resistant to the main limiting factors of the environment. Referativnyi Zhurnal 11.65.320: 214-215

    Google Scholar 

  • Smith FA & Raven JA (1979) Intracellular pH and its regulation. Ann. Rev. Plant Physiol. 30: 289-311

    CAS  Google Scholar 

  • Smith RH & Murashige T (1982) Primordial leaf and phytohormone effects on excised shoot apical meristems of Coleus blumei Benth. Am. J. Bot. 69: 1334-1339

    CAS  Google Scholar 

  • Smulders MJM, Rus-Kortekaas W & Vosman B (1995) Tissue culture-induced DNA methylation polymorphisms in repetitive DNA of tomato calli and regenerated plants. Theor. Appl. Genet. 91: 1257-1264

    Article  CAS  Google Scholar 

  • Somasundar M & Gostimsky SA (1992) Somaclonal variation in tomato tissue culture. Crop Improv. 19: 92-96

    Google Scholar 

  • Soniya EV, Banerjee NS & Das MR (2001) Genetic analysis of somaclonal variation among callus-derived plants of tomato. Curr. Sci. 80: 1213-1215

    CAS  Google Scholar 

  • Sree Ramulu K, Devreux M & Martinis P (1976) Origin and genetic analysis of plants regenerated in vitro from periclinal chimeras of Lycopersicum peruvianum. Z. Pflanzenzuchtung 77: 112-120

    Google Scholar 

  • Srivastava DK, Gupta VK & Sharma DR (1995) In vitro selection and characterization of water stress tolerant callus cultures of tomato (Lycopersicon esculentum L.). Indian J. Plant Physiol. 38: 99-104

    Google Scholar 

  • Stavarek SJ & Rains DW (1984) The development of tolerance to mineral stress. HortScience I19: 377-382

    Google Scholar 

  • Stommel JR & Sinden SL (1991) Genotypic differences in shootforming capacity of cultured leaf explants of Lycopersicon hirsutum. HortScience 26: 1317-1320

    Google Scholar 

  • Savr_Arrives.html}, Date of access 25 June 2003

  • Takashina T, Suzuki T, Egashira H & Imanishi S (1998) New molecular markers linked with the high shoot regeneration capacity of the wild tomato species Lycopersicon chilense. Breed. Sci. 48: 109-113

    Google Scholar 

  • Tal M, Dehan K & Heikin H (1977) Morphogenetic potential of cultured leaf sections of cultivated and wild species of tomato. Ann. Bot. 41: 937-941

    Google Scholar 

  • Thomas P & Mythili JB (1995) Development of cultured tomato anther to a fruit-like structure accompanied by in vitro ripening. Curr. Sci. 69: 94-95

    Google Scholar 

  • Toyoda H, Tanaka N & Hirai T (1984) Effects of the culture filtrate of Fusarium oxysporum f.sp. lycopersici on tomato callus growth and the selection of resistant callus cells to the filtrate. Ann. Phytol. Soc. Jap. 50: 53-62

    Google Scholar 

  • Toyoda H, Matsuda Y & Hirai T (1985) Resistance mechanism of cultured plant cells to tobacco mosaic virus (III) Efficient microinjection of tobacco mosaic virus into tomato callus cells. Ann. Phytol. Soc. Jap. 51: 32-38

    Google Scholar 

  • Toyoda H, Shimizu K, Chatani K, Kita N, Matsuda Y & Ouchi S (1989) Selection of bacterial wilt-resistant tomato through tissue culture. Plant Cell Rep. 8: 317-320

    Google Scholar 

  • Tyburski J & Tretyn A (1999) Organogenetic response of photomorphogenic mutants of tomato. J. Plant Physiol. 155: 568-575

    CAS  Google Scholar 

  • Varghese TM & Yadav G (1986) Production of embryoids and calli from isolated microspores of tomato (Lycopersicon esculentum Mill.) in liquid media. Biol. Planta 28: 126-129

    Google Scholar 

  • Venkatachalam P, Geetha N, Priya P, Rajaseger G & Jayabalan N (2000) High frequency plantlet regeneration from hypocotyl explants of tomato (Lycopersicon esculentum Mill.) via organogenesis. Plant Cell Biotechnol. Mol. Biol. 1: 95-100

    Google Scholar 

  • Villiers RPd, Vuuren RJv, Ferreira DI & Staden Jv (1993) Regeneration of adventitious buds from leaf discs of Lycopersicon esculentum cv. Rodade: optimization of culture medium and growth conditions. J. South African Soc. Hort. Sci. 3: 24-27

    Google Scholar 

  • Vnuchkova VA (1977a) Development of a method for obtaining regenerate tomato plants under tissue culture conditions. Fiziol. Rast. 24: 1094-1100

    CAS  Google Scholar 

  • Vnuchkova VA (1977b) Elaboration of methods for obtaining tomato plants by tissue culture. Fiziol. Rast. 24: 1095-1100

    Google Scholar 

  • Warren G (1993) The regeneration of plants from cultured cells and tissues. In: Stafford A & Warren G (eds) Plant Cell and Tissue Culture. John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore

    Google Scholar 

  • Welander MJ (1988) Plant regeneration from leaf and stem segments of shoots raised in vitro from mature apple trees. Plant Physiol. 132: 738-744

    Google Scholar 

  • Wijbrandi J, Vos JGM & Koornneef M (1988) Transfer of regeneration capacity from Lycopersicon peruvianum to L. esculentum by protoplast fusion. Plant Cell Tiss. Org. Cult. 12: 193-196

    Article  Google Scholar 

  • Wijbrandi J, Capelle Wv, Hanhart CJ, Martinet-Schuringa EPvL & Koornneef M (1990) Selection and characterization of somatic hybrids between Lycopersicon esculentum and Lycopersicon peruvianum. Plant Sci. 70: 197-208

    Article  Google Scholar 

  • Ye ZB, Li HX & Zhou GL (1994) In vitro culture of tomato cotyledons and regenerated plants. J. Huazhong Agric. Uni. 13: 291-295

    Google Scholar 

  • Zagorska NA, Abadjieva MD & Georgiev HA (1982) Inducing regeneration in anther cultures of tomatoes (Lycopersicon esculentum Mill.). Comptes Rendus de L'Academie Bulgare des Sci. 35: 97-100

    Google Scholar 

  • Zagorska NA, Shtereva A, Dimitrov BD & Kruleva MM (1998) Induced androgenesis in tomato (Lycopersicon esculentum Mill.). I. Influence of genotype on androgenetic ability. Plant Cell Rep. 17: 968-973

    Article  CAS  Google Scholar 

  • Zapata FJ (1980) Different regeneration potentials of mesophyll protoplasts from cultivated and a wild species of tomato. Planta 148: 89-96

    Google Scholar 

  • Zapata FJ, Sink KC & Cocking EC (1981) Callus formation from leaf mesophyll protoplasts of three Lycopersicon species: L. esculentum, cv. Walter, L. pimpinillifolium and L. hirsutum F. glabratum. Plant Sci. Lett. 23: 41-46

    CAS  Google Scholar 

  • Zelcer A, Soferman O & Izhar S (1984) An in vitro screening for tomato genotypes exhibiting efficient shoot regeneration. J. Plant Physiol. 115: 211-215

    Google Scholar 

  • Zhang H & Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnol. 19: 765-768

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatia, P., Ashwath, N., Senaratna, T. et al. Tissue Culture Studies of Tomato (Lycopersicon esculentum). Plant Cell, Tissue and Organ Culture 78, 1–21 (2004). https://doi.org/10.1023/B:TICU.0000020430.08558.6e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TICU.0000020430.08558.6e

Navigation