Skip to main content
Log in

An Algebraic Method for the Exact Solution of the Partition Function of the Canonical Ensemble in Nuclear Multifragmentation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose a unified method for deducing recursive relations for the canonical partition function of a system of noninteracting particles with charge conservation if the particles follow the Bose–Einstein, Fermi–Dirac, or Maxwell–Boltzmann statistics or parastatistics. For all these types of statistics, we find recursive relations for the partition function of a new statistical model of nuclear multifragmentation with electric charge and baryon number conservation, accounting for the internal degrees of freedom of the nuclear fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. P. Bondorf, A. S. Botvina, A. S. Iljinov, I. N. Mishustin, and K. Sneppen, Phys. Rep., 257, 133 (1995).

    Google Scholar 

  2. D. H. E. Gross, Rep. Prog. Phys., 53, 605 (1990).

    Google Scholar 

  3. R. Hagedorn and K. Redlich, Z. Phys. C, 27, 541 (1985).

    Google Scholar 

  4. J. Cleymans, H. Oeshler, and K. Redlich, Phys. Rev. C, 59, 1663 (1999).

    Google Scholar 

  5. J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York (1958).

    Google Scholar 

  6. P. T. Landsberg, Thermodynamics, Interscience, New York (1961).

    Google Scholar 

  7. P. Borrmann and G. Franke, J. Chem. Phys., 98, 2484 (1993).

    Google Scholar 

  8. H.-J. Schmidt and J. Schnack, Phys. A, 260, 479 (1998).

    Google Scholar 

  9. A. S. Parvan, V. D. Toneev, and M. PAloszajczak, Nucl. Phys. A, 676, 409 (2000).

    Google Scholar 

  10. K. C. Chase and A. Z. Mekjian, Phys. Rev. C, 52, R2339 (1995).

    Google Scholar 

  11. S. Das Gupta and A. Z. Mekjian, Phys. Rev. C, 57, 1361 (1998).

    Google Scholar 

  12. K. C. Chase and A. Z. Mekjian, Phys. Rev. C, 50, 2078 (1994).

    Google Scholar 

  13. S. Pratt and S. Das Gupta, Phys. Rev. C, 62, 044603 (2000).

    Google Scholar 

  14. A. S. Parvan, V. D. Toneev, and K. K. Gudima, Phys. Atomic Nuclei, 62, 1497 (1999).

    Google Scholar 

  15. P. Bhattacharyya, S. Das Gupta, and A. Z. Mekjian, Phys. Rev. C, 60, 054616, 064625 (1999).

    Google Scholar 

  16. K. Huang, Statistical Mechanics, Wiley, New York (1963).

    Google Scholar 

  17. I. A. Kvasnikov, Thermodynamics and Statistical Mechanics: The Equilibrium Theory [in Russian], Moscow State Univ. Publ., Moscow (1991).

    Google Scholar 

  18. M. Hamermesh, Group Theory and Its Application to Physical Problems, Wesley, Reading, Mass. (1962).

    Google Scholar 

  19. A. Z. Mekjian and S. J. Lee, Phys. Rev. A, 44, 6294 (1991).

    Google Scholar 

  20. A. B. Balantekin, Phys. Rev. E, 64, 066105 (2001).

    Google Scholar 

  21. H.-J. Schmidt and J. Schnack, Am. J. Phys., 70, 53 (2002).

    Google Scholar 

  22. F. Cerulus, Nuovo Cimento, 19, 528 (1961).

    Google Scholar 

  23. K. Redlich and L. Turko, Z. Phys. C, 5, 201 (1980).

    Google Scholar 

  24. A. Parvan, “Multifragmentation of finite nuclear systems in the statistical description,” Candidate dissertation, Joint Inst. Nucl. Res., Dubna (2002).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parvan, A.S. An Algebraic Method for the Exact Solution of the Partition Function of the Canonical Ensemble in Nuclear Multifragmentation. Theoretical and Mathematical Physics 140, 977–986 (2004). https://doi.org/10.1023/B:TAMP.0000033034.38474.cc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TAMP.0000033034.38474.cc

Navigation