Skip to main content
Log in

Theoretical Study of Molecular Structure, Reactivity, Lipophilicity, and Solubility of N-Hydroxyurea, N-Hydroxythiourea, and N-Hydroxysilaurea

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Ab initio molecular orbital methods at the CBS-QB3 level of theory have been used to study the structure and gas-phase stability of various tautomers and rotamers of N-hydroxyurea, N-hydroxythiourea, and N-hydroxysilaurea, their anions and protonated forms. The geometries of N-hydroxyurea, N-hydroxythiourea, and N-hydroxysilaurea, their anions and cations were optimized at the Becke3LYP/CBSB7 level of theory. For all compounds studied, the amidic form is computed to be substantially more stable than the iminolic tautomer. N-Hydroxyurea and its thio and sila derivatives are computed to behave as Nacids in the gas phase. These compounds are in gas-phase weak acids with a calculated acidity of about 1425 to 1355 kJ-mol−1. Basicities increase in the order: N-hydroxyurea < N-hydroxythiourea < N-hydroxysilaurea. The most stable protonated structures are represented by several isomers with almost equal stability. Thus, in the N-hydroxyurea, N-hydroxythiourea, and N-hydroxysilaurea, both protonation at the double bonded (C=O, C=S and Si=O) oxygen and sulfur atoms, as well as the protonation at the N(H)OH nitrogen basic center is equally probable. The experimental pK a value (10.6) of N-hydroxyurea and the computed value (9.7) for its monohydrated complex with the specifically hydrogen-bonded water molecule to the ionizable OH group are in a good agreement. The experimental partition coefficient of N-hydroxyurea is best reproduced by the Alog Ps method. The formation of nitroxide radical in the reaction of N-hydroxyurea and its sulfur and silicon substituted derivatives with the phenol radical is an exothermic process. Thus, the \bondN(H)OH moiety of these compounds may quench the structurally related tyrosyl radicals in the active site of ribonucleotide reductase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kehl, H. (Ed.) Chemistry and Biology of Hydroxamic Acids; Karger: New York, 1982.

    Google Scholar 

  2. Bernstein, P. R.; Bird, T. G.; Brewster, A. G. in Burger's Medicinal Chemistry and Drug Discovery; 5th edn., Vol. 5: Therapeutic Agents; Wiley: New York, 1997; p. 423–427.

    Google Scholar 

  3. Carter, G. W.; Yonng, P. R.; Albert, D. H.; Bouska, J. B.; Dyer, R. D.; Bell, R. L.; Summers, J. B.; Brooks, C. D. W. J. Pharmacol. Exp. Therap. 1991, 256, 929.

    Google Scholar 

  4. Brooks, C. D. W.; Summers, J. B. J. Med. Chem. 1996, 39, 2629.

    Google Scholar 

  5. McClarty, G. A.; Chan, A. K.; Choy, B. K.; Wright, J. A. J. Biol. Chem. 1990, 265, 7539.

    Google Scholar 

  6. Karlsson, M.; Sahlin, M. S.; Sjöberg, B. M. J. Biol. Chem. 1992, 267, 12622.

    Google Scholar 

  7. Nyholm, S.; Thelander, L.; Gräslund, A. Biochemistry 1993, 32, 11569.

    Google Scholar 

  8. Glover, R. E.; Ivy, E. D.; Orringer, E. P.; Maeda, H.; Mason, R. P. Mol. Pharmacol. 1999, 55, 1006.

    Google Scholar 

  9. Donehover, R. C. Seminars. Oncol. 1992, 19, S9, 11.

    Google Scholar 

  10. Sato, M.; Stammer, Ch. H. J. Med. Chem. 1976, 19, 336.

    Google Scholar 

  11. Remko, M. J. Phys. Chem. A 2002, 106, 5005.

    Google Scholar 

  12. La Manna, G.; Barone, L. Intern. J. Quantum Chem. 1996, 57, 971.

    Google Scholar 

  13. La Manna, G. J. Mol. Struct. (Theochem) 1996, 362, 355.

    Google Scholar 

  14. Jabalameli, A.; Zhanpeisov, N. U.; Nowek, A.; Sullivan, R. H.; Leszczynski, J. J. Phys. Chem. A 1997, 101, 3619.

    Google Scholar 

  15. Remko, M.; Lyne, P. D.; Richards, W. G. Phys. Chem. Chem. Phys. 1999, 1, 5353.

    Google Scholar 

  16. Remko, M.; Lyne, P. D.; Richards, W. G. Phys. Chem. Chem. Phys. 2000, 2, 2511.

    Google Scholar 

  17. Montgomery, J. A. Jr.; Frisch, M. J.; Ochterski, J. W.; Peterson, G. A. J. Chem. Phys. 1999, 110, 2822.

    Google Scholar 

  18. Alberty, R. A.; Silbey, R. J. Physical Chemistry, 2nd edn., J. Wiley: New York, 1997; p. 878.

    Google Scholar 

  19. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery J. A. Jr.,; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Rega, N.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; and Pople, J. A.; GAUSSIAN98, Revision A.11.4; Gaussian, Inc.: Pittsburgh, Pennsylvania, 2002.

    Google Scholar 

  20. Jaguar 4.2, Schrödinger, 1500 S. W. First Avenue, Suite 1180, Portland, OR 97201, 2000.

  21. Parker, G. R.; Korp, J. D. J. Pharm. Sci. 1978, 67, 239.

    Google Scholar 

  22. Kapp, J.; Remko, M.; Schleyer, P. v. R. J. Amer. Chem. Soc. 1996, 118, 5745.

    Google Scholar 

  23. Kapp, J.; Remko, M.; Schleyer, P. v. R. Inorg. Chem. 1997, 36, 4141.

    Google Scholar 

  24. Ventura, O. N.; Rama, J. B.; Tuti, L.; Dannenberg, J. J. J. Phys. Chem. 1995, 99, 131.

    Google Scholar 

  25. Bagno, A.; Scorrano, G. Account. Chem. Res. 2000, 33, 609.

    Google Scholar 

  26. Bagno, A.; Comuzzi, C. Eur. J. Org. Chem. 1999, p. 287.

  27. Politzer, P.; Huheey, J. E.; Murray, J. S.; Grodzicki, M. J. Mol. Struct. (Theochem), 1992, 259, 99.

    Google Scholar 

  28. Remko, M.; Smieško, M.; Van Duijnen, P.Th. Mol. Phys. 2000, 98, 709.

    Google Scholar 

  29. Decouzon, M.; Exner, O.; Gal, J. F.; Maria, P. C. J. Org. Chem. 1992, 57, 1621.

    Google Scholar 

  30. Decouzon, M.; Exner, O.; Gal, J. F.; Maria, P. C. J. Org. Chem. 1990, 55, 3980.

    Google Scholar 

  31. Linstrom, P. J.; and W. G.; Mallard, W. G. Eds. NIST Chemistry WebBook, NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD, 2001.

    Google Scholar 

  32. El Yazal, J.; Prendergast, F. G.; Shaw, D. E.; Pang, Y.-P. J. Amer. Chem. Soc. 2000, 122, 11411.

    Google Scholar 

  33. Kofod, H.; Huang, T. Y. Acta Chem. Scand. 1954, 8, 494.

    Google Scholar 

  34. Adam, K. R. J. Phys. Chem. A 2002, 106, 11963.

    Google Scholar 

  35. Oprea, T. T. J. Comp. Aided Mol. Design 2002, 16, 325.

    Google Scholar 

  36. Tetko, I. V.; Tanchuk, V. Y. J. Chem. Inf. Comp. Sci. 2002, 42, 1136.

    Google Scholar 

  37. Tetko, I. V.; Tanchuk, V. Y.; Villa, A. E. P. J. Chem. Inf. Comp. Sci. 2001, 41, 1407.

    Google Scholar 

  38. Tetko, I. V.; Tanchuk, V. Y.; Kasheva, T. N.; Villa, A. E. P. J. Chem. Inf. Comp. Sci. 2001, 41, 1488.

    Google Scholar 

  39. Interactive Analysis, 6 Ruben Duren Way, Bedford, MA 01730; 2002.

  40. Meylan, W. M.; Howard, P. H. J. Pharm. Sci. 1995, 84, 83.

    Google Scholar 

  41. Elford, H. Biochem. Biophys. Res. Commun. 1968, 33, 129.

    Google Scholar 

  42. Yarbro, J. W. Seminars Oncol. 1992, 19, 1.

    Google Scholar 

  43. Lassmann, G.; Liermann, B. Free Radical Biol. Med. 1989, 6, 241.

    Google Scholar 

  44. Becke, A. D. Phys. Rev. 1988, A38, 3038.

    Google Scholar 

  45. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

    Google Scholar 

  46. Yang, L. W.; Parr, R. G. Phys. Rev. 1988, B37, 785.

    Google Scholar 

  47. Timson, J. Mutation Res. 1975, 32, 115.

    Google Scholar 

  48. Elford, H. L.; Wampler, G. L.; van't Riet, B. Cancer Res. 1979, 39, 844.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Remko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remko, M., von der Lieth, CW. Theoretical Study of Molecular Structure, Reactivity, Lipophilicity, and Solubility of N-Hydroxyurea, N-Hydroxythiourea, and N-Hydroxysilaurea. Structural Chemistry 15, 285–294 (2004). https://doi.org/10.1023/B:STUC.0000026743.12611.d9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:STUC.0000026743.12611.d9

Navigation