Skip to main content
Log in

A High-Speed Erupting-Prominence CME: A Bridge Between Types

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Several studies have indicated that there may be two distinct types of coronal mass ejections (CMEs); a high-velocity bright energetic type associated with flares, and a smaller slower less impressive type associated with erupting prominences. How valid is this distinction? We analyze a CME combining attributes of both types, a high-velocity bright CME associated with an erupting prominence. A study of this event and several others allows us to argue that the apparent differences separating the two types may be an observational effect. Our results are consistent with a single CME process for both flare-associated and filament-associated CMEs. This process consists of three stages. The initial stage is brought about by the emergence of new magnetic flux, which interacts with the pre-existing magnetic configuration and results in a slow rise of the magnetic structure, which later becomes the CME. The second stage is a fast reconnection phase with flaring and a sudden increase of the rise velocity of the magnetic structure. It also includes a rapidly increasing CME acceleration followed by a rapidly falling acceleration. The third stage or CME propagation stage shows only slow changes in the acceleration and finally the velocity becomes constant. LASCO observes only the third stage. The differences found between observed flare-associated and prominence-associated CME velocity behavior appear to be primarily due to the relative heights in the corona at which the erupting structures form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, M. D. and Howard, R. A.: 2001, Space Sci. Rev. 95, 147.

    Article  ADS  Google Scholar 

  • Delannee, C., Delaboundiniere, J.-P., and Lamy, P.: 2000, Astron. Atrophys. 355, 725.

    ADS  Google Scholar 

  • Dodson, H. W. and Hedeman, E. R.: 1970, Solar Phys. 13, 401.

    Article  ADS  Google Scholar 

  • Feynman, J. and Martin, S. F.: 1995, J. Geophys. Res. 100, 3355.

    Article  ADS  Google Scholar 

  • Feynman, J. and Gabriel, S. B.: 2000, J. Geophys. Res. 105 10 543.

    Google Scholar 

  • Feynman, J., Ruzmaikin, A., and Berdichevsky, V.: 2002, J. Atmospheric Solar-terrest. Phys. 64, 1679.

    ADS  Google Scholar 

  • Fletcher, L.: 2002, In Longcope, D. and Fisher, G. H. (eds.), ITP Solar Magnetism and Related Astrophysics Workshop, University of California, Santa Barbara, (www.itp.ucsb.edu).

  • Forbes, T. G.: 2000, J. Geophys. Res. 105, 23253.

    Article  ADS  Google Scholar 

  • Gallagher, P. T., Lawrence, G. R., and Dennis, B. R.: 2003, Astrophys. J. 588 L53.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Shimojo, M., Lu, W., Yashiro, S., Shibasaki, K., and Howard, R. A.: 2003, Astrophys. J. 586, 562.

    Article  ADS  Google Scholar 

  • Hirshberg, J. F.: 1968, Planetary Space Sci. 16, 309.

    Article  ADS  Google Scholar 

  • Hundhausen, A. J.: 1988, In V. J. Pizzo, Holzer, T. E., and Sime, D. G. (eds.), Proceedings of the Sixth International Solar Wind Conference, NCAR/TN 306+Proc.

  • MacQueen, R. M. and Fisher, R. R.: 1983, Solar Phys. 89, 89.

    Article  ADS  Google Scholar 

  • Moon, Y.-J., Choe, G. S., Haimin,Wang, Park, Y. D., Gopalswamy, N., Yang, Guo, and Yashiro, S.: 2002, Astrophys. J. 581, 694.

    Article  ADS  Google Scholar 

  • Rompolt, Bogdan: 1990, Hvar Obs. Bull. 14, 37.

    ADS  Google Scholar 

  • Sheeley, N. R., Walters, J. H., Wang, Y.-M., and Howard, R. A.: 1999, J. Geophys. Res. 104, 24 739.

    Google Scholar 

  • Švestka, Z.: 2001, Space Sci. Rev. 95, 135.

    ADS  Google Scholar 

  • Vršnak, B., Ruždjak, V., and Rombolt. R.: 1991, Solar Phys. 136, 151.

    ADS  Google Scholar 

  • Vršnak, B., Klein, L., Warmuth, A., Otruba, W., and Skender, M.: 2003, Solar Phys. 214, 325.

    ADS  Google Scholar 

  • Vršnak, B., Warmuth, A., Maricic, D., Otruba, W., and Ružjak, V.: 2003, Solar Phys. 217, 187.

    ADS  Google Scholar 

  • Wang, H., Qui, J., Jing, J., and Zhang, H.: 2003, Astrophys. J. 593, 564.

    Article  ADS  Google Scholar 

  • Wang, Y-M. and Sheeley, N. R., Jr.: 1999, Astrophys. J. 510, L157.

    Article  ADS  Google Scholar 

  • Webb, D. F.: 1998, In IAU Colloquium 167, Webb, D., Rust, D., and Schmieder, B. (eds.). APS Conference Series, Vol. 150, 463–474.

  • Zhang, J., Dere, K. P., Howard, R. A., Kundu, M. R., and White, S.M.: 2001, Astrophys. J. 559, 452.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feynman, J., Ruzmaikin, A. A High-Speed Erupting-Prominence CME: A Bridge Between Types. Solar Physics 219, 301–313 (2004). https://doi.org/10.1023/B:SOLA.0000022996.53206.9d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:SOLA.0000022996.53206.9d

Keywords

Navigation