Skip to main content
Log in

Functional Expression and Localization of P-glycoprotein in the Central Nervous System: Relevance to the Pathogenesis and Treatment of Neurological Disorders

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The expression of membrane drug transport systems in the central nervous system plays an important role in the brain disposition and efficacy of many pharmacological agents used in the treatment of neurological disorders such as neoplasia, epilepsy, and HIV-associated dementia. Of particular interest is P-glycoprotein, a membrane-associated, energy-dependent, efflux transporter that confers the multidrug resistance phenotype to many cells by extruding a broad range of xenobiotics from the cell, resulting in poor clinical outcomes. In addition, the expression pattern of P-glycoprotein has recently been suggested to play a key role in the etiology and pathogenesis of certain diseases such as Alzheimer's and Parkinson's diseases. This review will focus on the cellular localization, molecular expression, and functional activity of P-glycoprotein in several compartments of the central nervous system and address its relevance in the pathogenesis and pharmacological treatment of neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. K. Rowinsky, L. Smith, Y. M. Wang, P. Chaturvedi, M. Villalona, E. Campbell, C. Aylesworth, S. G. Eckhardt, L. Hammond, M. Kraynak, R. Drengler, J. Stephenson, M. W. Harding, and D. D. Von Hoff. Phase I and pharmacokinetic study of paclitaxel in combination with biricodar, a novel agents that reverses multidrug resistance conferred by overexpression of both MDR1 and MRP. J. Clin. Oncol. 16:2964–2976 (1998).

    Google Scholar 

  2. C. Wandel, R. B. Kim, S. Kajiji, P. Guengerich, G. R. Wilkinson, and A. J. Wood. P-glycoprotein and cytochrome P450 3A inhibtion: Dissociation of inhibitory potencies. Cancer Res. 59:3944-3948 (1999).

    Google Scholar 

  3. R. Krishna and L. D. Mayer. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur. J. Pharm. Sci. 11:265–283 (2000).

    Google Scholar 

  4. F. Hyafil, C. Vergely, P. Du Vignaud, and T. Grand-Perret. In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res. 53:4595–4602 (1993).

    Google Scholar 

  5. A. H. Dantzig, R. L. Shepard, K. L. Law, L. Tabas, S. Pratt, J. S. Gillespie, S. N. Binkley, M. T. Kuhfeld, J. J. Starling, and S. A. Wrighton. Selectivity of the multidrug resistance modulator, LY335979, for P-glycoprotein and effect on cytochrome P-450 activities. J. Pharmacol. Exp. Ther. 290:854–862 (1999).

    Google Scholar 

  6. M. J. Newman, J. C. Rodarte, K. D. Benbatoul, S. J. Romano, C. Zhang, S. Krane, E. J. Moran, R. T. Uyeda, R. Dixon, E. S. Guns, and L. D. Mayer. Discovery and characterization of OC144-093, a novel inhibitor of P-glycoprotein-mediated multidrug resistance. Cancer Res. 60:2964–2972 (2000).

    Google Scholar 

  7. M. Maliepaard, M. A. van Gastelen, A. Tohgo, F. H. Hausheer, R. C. van Waardenburg, L. A. de Jong, D. Pluim, J. H. Beijnen, and J. H. Schellens. Circumvention of breast cancer resistance protein (BCRP)-mediated resistance to camptothecins in vitro using non-substrate drugs or the BCRP inhibitor GF120918. Clin. Cancer Res. 7:935–941 (2001).

    Google Scholar 

  8. O. B. Paulson. Blood-brain barrier, brain metabolism and cerebral blood flow. Eur. Neuropsychopharmacol. 12:495–501 (2002).

    Google Scholar 

  9. M. W. Brightman. Morphology of blood-brain barrier. Exp. Eye Res. 25:1–25 (1977).

    Google Scholar 

  10. N. J. Abbott. Astrocyte-endothelial interactions and bloodbrain barrier permeability. J. Anat. 200:629–638 (2002).

    Google Scholar 

  11. A. G. De Boer, I. C. van der Sandt, and P. J. Gaillard. The role of drug transporters at the blood-brain barrier. Annu. Rev. Pharmacol. Toxicol. 43:629–656 (2003).

    Google Scholar 

  12. A. N. Butt, H. C. Jones, and J. N. Abbott. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J. Physiol. 429:47–62 (1990).

    Google Scholar 

  13. K. Kacem, P. Lacombe, J. Seylaz, and G. Bonvento. Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia 23:1–10 (1998).

    Google Scholar 

  14. P. Seeman and H. Kalant. Drug solubility, absorption, and movement across body membranes. In H. Kalant and W. H. Roschlau (eds.), Principles of Medical Pharmacology,5th edition, B.C. Decker Inc, Burlington, Ontario, Canada, 1989, pp. 14–20.

    Google Scholar 

  15. M. H. Abraham and J. A. Platts. Physichochemical factors that influence brain uptake. In D. J. Begley, M. W. Bradbury, and J. Kreuter (eds.), The Blood Brain Barrier and Drug Delivery to the CNS, Marcel Dekker, New York, 2000, pp. 9–32.

    Google Scholar 

  16. M. Simionescu, A. Gafencu, and F. Antohe. Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Microsc. Res. Tech. 57:269–288 (2002).

    Google Scholar 

  17. N. Simionescu, F. Lupu, and M. Simionescu. Rings of membrane sterols surround the opening of vesicles and fenestrae, in capillary endothelium. J. Cell Biol. 97:1592–1600 (1983).

    Google Scholar 

  18. R. G. Anderson, B. A. Kamen, K. G. Rothberg, and S. W. Lacey. Potocytosis: sequestration and transport of small molecules by caveolae. Science 255:410–411 (1992).

    Google Scholar 

  19. R. Montesano, J. Roth, A. Robert, and L. Orci. Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins. Nature 296:651–653 (1982).

    Google Scholar 

  20. D. Tran, J. L. Carpentier, F. Sawano, P. Gorden, and L. Orci. Ligands internalized through coated or noncoated invaginations follow a common intracellular pathway. Proc. Natl. Acad. Sci. USA 84:7957–7961 (1987).

    Google Scholar 

  21. M. P. Lisanti, P. E. Scherer, Z. L. Tang, and M. Sargiacomo. Caveolae, caveolin and caveolin-rich membrane domains: a signaling hypothesis. Trends Cell Biol. 4:231–235 (1994).

    Google Scholar 

  22. W. M. Pardridge and R. J. Boado. Molecular cloning and regulation of gene expression of blood-brain barrier glucose transporter. In W. M. Pardridge (ed.), The Blood-Brain Barrier. Cellular and Molecular Biology, Raven Press, New York, 1993, pp. 395–440.

    Google Scholar 

  23. G. Lee, S. Dallas, M. Hong, and R. Bendayan. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol. Rev. 53:569–596 (2001).

    Google Scholar 

  24. J. F. Ghersi-Egea, B. Leninger-Muller, G. Suleman, G. Siest, and A. Minn. Localization of drug-metabolizing enzyme activities to blood-brain interfaces and circumventricular organs. J. Neurochem. 62:1089–1096 (1994).

    Google Scholar 

  25. M. B. Segal. The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cell. Mol. Neurobiol. 20:183-196 (2000).

    Google Scholar 

  26. J. F. Ghersi-Egea and N. Strazielle. Brain drug delivery, drug metabolism, and multidrug resistance at the choroid plexus. Microscopy Res. Tech. 52:83–88 (2001).

    Google Scholar 

  27. M. R. Del Bigio. The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia 14:1–13 (1995).

    Google Scholar 

  28. H. Davson and M. B. Segal. The effects of some inhibitors and accelerators of sodium transport on the turnover of 22Na in the cerebrospinal fluid and the brain. J Physiol 209:131–153 (1970).

    Google Scholar 

  29. C. E. Johanson, S. M. Sweeney, J. T. Parmelee, and M. H. Epstein. Co-transport of sodium and chloride by the adult mammalian choroid plexus. Am. J. Physiol. 258:C211-C216 (1990).

    Google Scholar 

  30. A. Schmitt, E. Asan, K. P. Lesch, and P. Kugler. A splice variant of glutamate transporter GLT1/EAAT2 expressed in neurons: cloning and localization in rat nervous system. Neuroscience 109: 45–61 (2002).

    Google Scholar 

  31. Y. Tochino and L. S. Schanker. Active transport of quaternary ammonium compounds by the choroid plexus in vitro. Am. J. Physiol. 208:666–673 (1965).

    Google Scholar 

  32. Y. Tochino and L. S. Schanker. Transport of serotonin and norepinephrine by the rabbit choroid plexus in vitro. Biochem. Pharmacol. 14:1557–1566 (1965).

    Google Scholar 

  33. 33. M. T. Whittico, Y. A. Gang, and K. M. Giacomini. Cimetidine transport in isolated brush border membrane vesicles from bovine choroid plexus. J. Pharmacol. Exp. Ther. 255:615–623 (1990).

    Google Scholar 

  34. L. Li, T. K. Lee, and P. J. Meier. N. and Ballatori. Identification of glutathione as a driving force and leukotriene C4 as a substrate for oatp1, the hepatic sinusoidal organic solute transporter. J. Biol. Chem. 273:16184–16191 (1998).

    Google Scholar 

  35. X. Wu. M.M. Gutierrez, and K.M. Giacomini. Further characterization of the sodium-dependent nucleoside transporter (N3) Lee and Bendayan 1324in choroid plexus from rabbit. Biochim. Biophys. Acta 1191:190–196 (1994).

    Google Scholar 

  36. X. Wu, G. Yuan, C. M. Brett, A. C. Hui, and K. M. Giacomini. Sodium-dependent nucleoside transport in choroid plexus from rabbit. Evidence for a single transporter for purine and pyrimidine nucleosides. J. Biol. Chem. 267:8813–8818 (1992).

    Google Scholar 

  37. V. V. Rao, J. L. Dahlheimer, M. E. Bardgett, A. Z. Snyder, R. A. Finch, A. C. Sartorelli, and D. Piwnica-Worms. Choroid plexus epithelial expression of MDR1 P-glycoprotein and multidrug resistance-associated protein contribute to the bloodcerebrospinal fluid drug permeability barrier. Proc. Natl. Acad. Sci. USA 96:3900–3905 (1999).

    Google Scholar 

  38. B. Volk, U. Hettmannsperger, T. Papp, Z. Amelizad, F. Oesch, and R. Knoth. Mapping of phenytoin-inducible cytochrome P450 immunoreactivity in the mouse central nervous system. Neuroscience 42:215–235 (1991).

    Google Scholar 

  39. M. Lindvall, J. E. Hardebo, and C. Owman. Barrier mechanisms for neurotransmitter monamines in the choroid plexus. Acta Physiol. Scand. 108:215–221 (1980).

    Google Scholar 

  40. I. Tayarani, I. Cloez, M. Clement, and J. M. Bourre. Antioxidant enzymes and related trace elements in aging brain capillaries and choroid plexus. J. Neurochem. 53:817–824 (1989).

    Google Scholar 

  41. G. Perea and A. Araque. Communication between astrocytes and neurons: a complex language. J Physiol 96:199–207 (2002).

    Google Scholar 

  42. W. E. Van Heyningen. The fixation of tetanus toxin, strychnine, serotonin and other substances by ganglioside. J. Gen. Microbiol. 31:375–387 (1963).

    Google Scholar 

  43. M. C. Raff, E. R. Abeny, J. Cohen, R. Lindsay, and M. Noble. Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides and growth characteristics. J. Neurosci. 3:1289–1300 (1983).

    Google Scholar 

  44. P. E. Duffy. Astrocytes: Normal, Reactive and Neoplastic, Raven Press, New York, 1983.

    Google Scholar 

  45. C. G. Tedeschi. Neuropathology: Methods and Diagnosis, Little, Brown and Co., Boston, 1970.

    Google Scholar 

  46. W. Walz. Controversy surrounding the existence of discrete functional classes of astrocytes in adult gray matter. Glia 31:95–103 (2000).

    Google Scholar 

  47. Y. Dong Y. and E. N. Benveniste. Immune functions of astrocytes. Glia 36:180–190 (2001).

    Google Scholar 

  48. P. G. Haydon. Neuroglia networks: neurons and glia talk to eachother. Curr. Biol. 10:R712-R714 (2000).

    Google Scholar 

  49. E. N. Benveniste. Cytokine actions in the central nervous system. Cytokine Growth Factor Rev. 9:259–275 (1998).

    Google Scholar 

  50. M. Aschner. Immune and inflammatory responses in the CNS: modulation by astrocytes. Toxicol. Lett. 102-103:283–287 (1998).

    Google Scholar 

  51. H. Wolburg and W. Risau. Neuroglia. In B. R. Ransom and H. Kettenmann (eds.), Formation of the Blood-Brain Barrier.Oxford University Press, New York, 1995, pp. 763–776.

    Google Scholar 

  52. U. V. Malipiero, K. Frei, and A. Fontana. Production of hemopoietic colony stimulating factors by astrocytes. J. Immunol. 144: 3816–3821 (1990).

    Google Scholar 

  53. B. Pearce, J. Albrecht, C. Morrow, and S. Murphy. Astrocyte glutamate receptor activation promotes inositol phospholipid turnover and calcium flux. Neurosci. Lett. 72:335–340 (1986).

    Google Scholar 

  54. B. I. Kanner. Glutamate transporters from brain. A novel neurotransmitter transport family. FEBS Lett. 325:95–99 (1993).

    Google Scholar 

  55. P. Rakic. Principles of neural cell migration. Experientia 46:882-891 (1990).

    Google Scholar 

  56. S. Yu and W. G. Ding. The 45 kDa form of glucose transporter 1 (GLUT1) is localized in oligodendrocyte and astrocyte but not in microglia in the rat brain. Brain Res. 797:65–72 (1998).

    Google Scholar 

  57. M. Domercq, M. V. Sanchez-Gomez, P. Areso, and C. Matute. Expression of glutamate transporters in rat optic nerve oligodendrocytes. Eur. J. Neurosci. 11:2226–2236 (1999).

    Google Scholar 

  58. U. V. Berger, H. Tsukaguchi, and M. A. Hediger. Distribution of mRNA for the facilitated urea transporter UT3 in the rat nervous system. Anat. Embryol. 197:405–414 (1998).

    Google Scholar 

  59. E. Hosli and L. Hosli. Autoradiographic studies on the uptake of adenosine and on binding of adenosine analogues in neurons and astrocytes of cultured rat cerebellum and spinal cord. Neuroscience 24:621–628 (1988).

    Google Scholar 

  60. J. G. Gu, A. Nath, and J. D. Geiger. Characterization of inhibitor-sensitive and resistant adenosine transporters in cultured human fetal astrocytes. J. Neurochem. 67:972–977 (1996).

    Google Scholar 

  61. C. J. Sinclair, C. G. LaRiviere, J. D. Young, C. E. Cass, S. A. Baldwin, and F. E. Parkinson. Purine uptake and release in rat C6 glioma cells: nucleoside transport and purine metabolism under ATP-depleting conditions. J. Neurochem. 75:1528–1538 (2000).

    Google Scholar 

  62. P. B. Simpson, L. A. Holtzclaw, D. B. Langley, and J. T. Russell. Characterization of ryanodine receptors in oligodendrocytes, type 2 astrocytes, and O-2A progenitors. J. Neurosci. Res. 52: 468–482 (1998).

    Google Scholar 

  63. W. Zhang, J. Mojsilovic-Petrovic, M. F. Andrade, H. Zhang, M. Ball, and D. B. Stanimirovic. Expression and functional characterization of ABCG2 in brain endothelial cells and vessels. FASEB J. 17:2085–2087 (2003).

    Google Scholar 

  64. W. M. Pardridge. Drug delivery to the brain. J. Cereb. Blood Flow Metab. 17:713–731 (1997).

    Google Scholar 

  65. X. Decleves, A. Regina, J. L. Laplanche, F. Roux, B. Boval, J. M. Launay, and J. M. Scherrmann. Functional expression of P-glycoprotein and multidrug resistance-associated protein (Mrp1) in primary cultures of rat astrocytes. J. Neurosci. Res. 60:594–601 (2000).

    Google Scholar 

  66. P. Ronaldson, M. Bendayan, D. Gingras, M. Piquette-Miller, R. Bendayan. Cellular localization and functional expression of Pglycoprotein in rat astrocyte cultures. J. Neurochem. 89:788–800 (2004).

    Google Scholar 

  67. P. Ronaldson, G. Lee, S. Dallas, and R. Bendayan. Involvement of P-glycoprotein in the transport of saquinavir and indinavir in rat brain microvessel endothelial and microglia cell lines. Pharm. Res. 21:811–818 (2004).

    Google Scholar 

  68. S. E. Pfeiffer, A. E. Warrington, and R. Bansal. The oligodendrocyte and its many cellular processes. Trends Cell Biol. 3:191-197 (1993).

    Google Scholar 

  69. R. Wilson and P. J. Brophy. Role for the oligodendrocyte cytoskeleton in myelination. J. Neurosci. Res. 22:439–448 (1989).

    Google Scholar 

  70. K. Ainger, D. Avossa, F. Morgan, S. J. Hill, C. Barry, E. Barbarese, and J. H. Carson. Transport and localization of exogenous myelin basic protein mRNA microinjected into oligodendrocytes. J. Cell Biol. 123:431–441 (1993).

    Google Scholar 

  71. P. J. Brophy, G. L. Bocaccio, and D. R. Colman. The distribution of myelin basic protein mRNAs within myelinating oligodendrocytes. Trends Neurosci. 16:515–521 (1993).

    Google Scholar 

  72. B. D. Trapp, G. J. Kidd, P. Hauer, E. Mulrenin, C. A. Haney, and S. B. Andrews. Polarization of myelinating Schwann cell surface membranes: role of microtubules and the trans-Golgi network. J. Neurosci. 15:1797–1807 (1995).

    Google Scholar 

  73. Y. Tanaka, K. Yamada, C. J. Zhou, N. Ban, S. Shioda, and N. Inagaki. Temporal and spatial profiles of ABCA2-expressing oligodendrocytes in the developing rat brain. J. Comp. Neurol. 455:353–367 (2003).

    Google Scholar 

  74. F. Maher. Immunolocalization of GLUT1 and GLUT3 glucose transporters in primary cultured neurons and glia. J. Neurosci. Res. 42:459–469 (1995).

    Google Scholar 

  75. O. Braissant, T. Gotoh, M. Loup, M. Mori, and C. Bachmann. Differential expression of the cationic amino acid transporter 2(B) in the adult rat brain. Brain Res. Mol. Brain Res. 91:189-195 (2001).

    Google Scholar 

  76. K. Gipson and A. Bordey. Analysis of the K+ current profile of mature rat oligodendrocytes in situ. J. Membr. Biol. 189:201–212 (2002).

    Google Scholar 

  77. J. Hirrlinger, J. Konig, and R. Dringen. Expression of mRNAs of multidrug resistance proteins (Mrps) in cultured rat astrocytes, oligodendrocytes, microglial cells and neurones. J. Neurochem. 82:716–719 (2002).

    Google Scholar 

  78. P. E. Knapp, O. S. Itkis, and M. Mata. Neuronal interaction determines the expression of the alpha-1 isoform of Na/KATPase in oligodendrocytes. Brain Res. Dev. Brain Res. 125:89-97 (2000).

    Google Scholar 

  79. P. T. Massa, S. Saha, C. Wu, and K. W. Jarosinski. Expression and function of the protein tyrosine phosphatase SHP-1 in oligodendrocytes. Glia 29:376–385 (2000).

    Google Scholar 

  80. N. Chattopadhyay, C. P. Ye, T. Yamaguchi, O. Kifor, P. M. Vassilev, R. Nishimura, and E. M. Brown. Extracellular calcium-sensing receptor in rat oligodendrocytes: expression and potential role in regulation of cellular proliferation and an outward K+ channel. Glia 24:449–458 (1998).

    Google Scholar 

  81. L. J. Lawson, V. H. Perry, P. Dri, and S. Gordon. Heterogeneity Expression and Localization of P-glycoprotein in the Brain 1325in the distribution and morphology of microglia in the normal, adult mouse brain. Neuroscience 39:151–170 (1990).

    Google Scholar 

  82. P. Del Rio Hortega. Microglia. In. W. Penfield (ed.), Cytology and Cellular Pathology of the Nervous System,Hoeber, New York, 1932, pp. 481–584.

    Google Scholar 

  83. E. J. Davis, T. D. Foster, and W. E. Thomas. Cellular forms and functions of brain microglia. Brain Res. Bull. 34:73–78 (1994).

    Google Scholar 

  84. W. J. Streit and G. W. Kreutzberg. Lectin binding by resting and reactive microglia. J. Neurocytol. 16:249–260 (1987).

    Google Scholar 

  85. J. A. Glenn, P. L. Booth, and W. E. Thomas. Pinocytotic activity in ramified microglia. Neurosci. Lett. 123:27–31 (1991).

    Google Scholar 

  86. P. A. Ransom and W. E. Thomas. Pinocytosis as a select marker of ramified microglia in vivo and in vitro. J. Histochem. Cytochem . 39:853–858 (1991).

    Google Scholar 

  87. S. A. Ward, P. A. Ransom, P. L. Booth, and W. E. Thomas. Characterization of ramified microglia in tissue culturepinocytosis and motility. J. Neurosci. Res. 29:13–28 (1991).

    Google Scholar 

  88. M. B. Graeber, W. J. Streit, and G. W. Kreutzberg. The microglial cytoskeleton: Vimentin is localized within activated cells in situ. J. Neurocytol. 17:573–580 (1988).

    Google Scholar 

  89. M. B. Graeber, W. J. Streit, and G. W. Kreutzberg. Axotomy of the rat facial nerve leads to increased CR3 complement receptor expression by activated microglial cells. J. Neurosci. Res. 21:18–24 (1988).

    Google Scholar 

  90. W. J. Streit, M. B. Graeber, and G. W. Kreutzberg. Peripheral nerve lesion produces increased levels of major histocompatibility complex antigens in the central nervous system. J. Neuroimmunol. 21:117–123 (1989).

    Google Scholar 

  91. H. Akiyama, T. Arai, H. Kondo, E. Tanno, C. Haga, and K. Ikeda. Cell mediators of inflammation in the Alzheimer disease brain. Alzheimer Dis Assoc Discord 1:S47–S53 (2000).

    Google Scholar 

  92. J. B. Brierley and A. W. Brown. The origin of lipid phagocytes in the central nervous system. I. The intrinsic microglia. J. Comp. Neurol. 211:397–406 (1982).

    Google Scholar 

  93. W. J. Streit and G. W. Kreutzberg. Response of endogenous glial cells to motor neuron degeneration induced by toxic ricin. J. Comp. Neurol. 268:248–263 (1988).

    Google Scholar 

  94. R. B. Banati, J. Gehrmann, P. Schubert, and G. W. Kreutzberg. Cytotoxicity of microglia. Glia 7:111–118 (1993).

    Google Scholar 

  95. 95. G. W. Kreutzberg. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19:312–318 (1996).

    Google Scholar 

  96. S. Chabot, G. Williams, and V. W. Yong. Microglia production of TNF-alpha is induced by activated T lymphocytes. Involvement of VLA-4 and inhibition by interferon beta-1b. J. Clin. Invest. 100:604–612 (1997).

    Google Scholar 

  97. K. Todd and R. F. Butterworth. Mechanisms of selective neuronal cell death due to thiamine deficiency. Ann. N. Y. Acad. Sci. 893:404–411 (1999).

    Google Scholar 

  98. M. Walton, B. Connor, P. Lawlor, D. Young, E. Sirimanne, P. Gluckman, G. Cole, and M. Dragunow. Neuronal death and survival in two models of hypoxic-ischemic brain damage. Brain Res. Brain Res. Rev. 29:137–168 (1999).

    Google Scholar 

  99. H. Xiong, Y. C. Zeng, T. Lewis, J. Zheng, Y. Persidsky, and H. E. Gendelman. HIV-1 infected mononuclear phagocyte secretory products affect neuronal physiology leading to cellular demise: relevance for HIV-1 associated dementia. J. Neurovirol. 6:S14-S23 (2000).

    Google Scholar 

  100. C. Frelin, P. Vigne, T. Jean, P. Barby, and M. Lazdunski. The role of the Na+/H+ antiport in cardiac cells, skeletal muscle cells, neuronal cells, and glial cells. In S. Grinstein (ed.), Na+/H+ Exchange,CRC Press LLC, Boca Raton, 1988, pp. 155–166.

    Google Scholar 

  101. R. Klee, U. Heinemann, and C. Eder. Voltage-gated proton currents in microglia of distinct morphology and functional state. Neuroscience 91:1415–1424 (1999).

    Google Scholar 

  102. M. Noda, H. Nakanishi, J. Nabekura, and N. Akaike. Ampakainate subtypes of glutamate receptor in rat cerebral microglia. J. Neurosci. 20:251–258 (2000).

    Google Scholar 

  103. M. Hong, L. Schlichter, and R. Bendayan. A Na+ dependent nucleoside transporter in microglia. J. Pharmacol. Exp. Ther. 292:366–374 (2000).

    Google Scholar 

  104. M. Hong, L. Schlichter, and R. Bendayan. A novel zidovudine uptake system in microglia. J. Pharmacol. Exp. Ther. 296:141–149 (2001).

    Google Scholar 

  105. G. Lee, L. Schlichter, M. Bendayan, and R. Bendayan. Functional expression of P-glycoprotein in rat brain microglia. J. Pharmacol. Exp. Ther. 299:204–212 (2001).

    Google Scholar 

  106. S. Dallas, X. Zhu, S. Baruchel, L. Schlichter, and R. Bendayan. Functional expression of the multidrug resistance protein 1 in microglia. J. Pharmacol. Exp. Ther. 307:282–290 (2003).

    Google Scholar 

  107. S. Dallas, L. Schlichter, and R. Bendayan. Multidrug resistance proteins (MRP)4 and MRP5-mediated efflux of 9-(2-phosphonylmethoxyethyl) adenine by microglia. J. Pharmacol. Exp. Ther. 309:1221–1229 (2004).

    Google Scholar 

  108. P. F. Juranka, R. L. Zastawny, and V. Ling. P-glycoprotein: multidrug-resistance and a superfamily of membrane-associated transport proteins. FASEB J. 3:2583–2592 (1989).

    Google Scholar 

  109. K. Ueda, M. M. Cornwell, M. M. Gottesman, I. Pastan, I. B. Roninson, V. Ling, and J. R. Riordan. The mdr1 gene responsible for multidrug resistance codes for P-glycoprotein. Biochim. Biophys. Res. Commun. 141:956–962 (1986).

    Google Scholar 

  110. J. A. Endicott and V. Ling. The biochemistry of P-glycoproteinmediated multidrug resistance. Annu. Rev. Biochem. 58:137–171 (1989).

    Google Scholar 

  111. J. E. Chin, R. Soffir, K. E. Noonan, and K. Choi. and I. B. Roninson. Structure and expression of the human MDR (Pglycoprotein) gene family. Mol. Cell. Biol. 9:3808–3820 (1989).

    Google Scholar 

  112. A. Devault A. and P. Gros. Two members of the mouse mdr gene family confer multidrug resistance with overlapping but distinct drug specificities. Mol. Cell. Biol. 10:1652–1663 (1990).

    Google Scholar 

  113. P. Gros, M. Raymond, J. Bell, and D. Housmann. Cloning and characterization of a second member of the mouse mdr gene family. Mol. Cell. Biol. 8:2770–2778 (1988).

    Google Scholar 

  114. K. Ueda, C. Cardarelli, M. M. Gottesman, and I. Pastan. Expression of a full length cDNA for the human mdr1 gene confers resistance to colchicine, doxorubicin and vinblastine. Proc. Natl. Acad. Sci. USA 84:3004–3008 (1987).

    Google Scholar 

  115. P. Gros, Y. Ben Neriah, J. M. Croop, and D. E. Housman. Isolation and expression of a cDNA (mdr) that confers multidrug resistance. Nature 323:728–731 (1986).

    Google Scholar 

  116. J. J. Smit, A. H. Schinkel, R. Oude Elferink, A. K. Groen, E. Wagenaar, L. Van Deemter, C. A. Mol, R. Ottenhoff, N. M. Van der Lugt, M. Can Room, M. A. Van der Valk, G. J. Offerhaus, A. J. Berns, and P. Borst. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75:451–462 (1993).

    Google Scholar 

  117. C. J. Chen, J. E. Chin, K. Ueda, D. P. Clark, I. Pastan, M. M. Gottesman, and I. B. Roninson. Internal duplication and homology with bacterial transport proteins in the mdr1 (pglycoprotein) gene from multidrug resistant human cells. Cell 47:381–389 (1986).

    Google Scholar 

  118. W. T. Beck and M. C. Cirtain. Continued expression of vinca alkaloid resistance by CCRF-CEM cells after treatment with tunicamycin or pronase. Cancer Res. 209:184–189 (1982).

    Google Scholar 

  119. H. Hamada, K. I. Hagiwara, T. Nakajima, and T. Tsuruo. Phosphorylation of the 170,000 to 180,000 glycoprotein specific to multidrug resistant tumor cells: effects of verapamil, trifluoperazine and phorbol esters. Cancer Res. 47:2860–2865 (1987).

    Google Scholar 

  120. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Cellular localization of the multidrug resistance gene product in normal human tissues. Proc. Natl. Acad. Sci. USA 84:7735–7738 (1987).

    Google Scholar 

  121. R. J. Arceci, J. M. Croop, S. B. Horwitz, and D. Housman. The gene encoding multidrug resistance is induced and expressed at high levels during pregnancy in the secretory epithelium of the uterus. Proc. Natl. Acad. Sci. USA 85:4350–4354 (1988).

    Google Scholar 

  122. P. M. Chaudhary and I. B. Roninson. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 66:85–95 (1991).

    Google Scholar 

  123. D. Drach, S. Zhao, J. Drach, R. Mahadevia, C. Gattringer, H. Huber, and M. Andreeff. Subpopulations of normal peripheral blood and bone marrow cells express a functional multidrug resistant phenotype. Blood 80:2451–2458 (1992).

    Google Scholar 

  124. W. T. Klimecki, B. W. Futscher, T. M. Grogan, and W. S. Dalton. P-glycoprotein expression and function in circulating blood cells from normal volunteers. Blood 83:2451–2458 (1994).

    Google Scholar 

  125. M. M. Gottesman and I. Pastan. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62:385–427 (1993).

    Google Scholar 

  126. C. F. Higgins and M. M. Gottesman. Is the multidrug transporter a flippase? Trends Biochem. Sci. 17:18–21 (1992).

    Google Scholar 

  127. F. J. Sharom. The P-glycoprotein efflux pump: how does it transport drugs? J. Membr. Biol. 160:161–175 (1997).

    Google Scholar 

  128. Y. Romsicki and F. J. Sharom. Phospholipid flippase activity of the reconstituted P-glycoprotein multidrug transporter. Biochemistry 40:6937–6947 (2001).

    Google Scholar 

  129. G. A. Fisher, B. L. Lum, J. Hausdorff, and B. I. Sikic. Pharmacological considerations in the modulation of multidrug resistance. Eur. J. Cancer 32A:1082–1088 (1996).

    Google Scholar 

  130. T. Saeki, K. Ueda, Y. Tanigawara, R. Hori, and T. Komano. Human P-glycoprotein transports cyclosporin A and FK506. J. Biol. Chem. 268:6077–6080 (1993).

    Google Scholar 

  131. Y. Tanigawara, N. Okamura, M. Hirai, M. Yasuhara, K. Ueda, N. Kioka, T. Komano, and R. Hori. Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLCPK). J. Pharm. Exp. Ther. 263:840–845 (1992).

    Google Scholar 

  132. E. G. Schuetz, W. T. Beck, and J. D. Schuetz. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately upregulate these proteins in human colon carcinoma cells. Mol. Pharmacol. 49:311–318 (1996).

    Google Scholar 

  133. C. L. Lee, M. M. Gottesman, C. O. Cardarelli, M. Ramachandra, K. T. Jeang, S. V. Ambudkar, I. Pastan, and S. Dey. HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry 37:3594–3601 (1998).

    Google Scholar 

  134. A. H. Schinkel, J. J. Smit, O. van Tellingen, J. G. Beijnen, E. Wagenaar, L. van Deemter, C. A. Mol, M. A. van der Valk, E. C. Robanus Maandag, H. P. te Riele, A. J. Berns, and P. Borst. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitive deficiency to drugs. Cell 77:491–502 (1994).

    Google Scholar 

  135. S. M. Witherspoon, D. L. Emerson, B. M. Kerr, T. L. Lloyd, W. S. Dalton, and P. S. Wissel. Flow cytometric assay of modulation of P-glycoprotein function in whole blood by the multidrug resistance inhibitor GG918. Clin. Cancer Res. 2:7–12 (1996).

    Google Scholar 

  136. A. Cayre, F. Cachin, J. Maublant, D. Mestas, V. Feillel, J. P. Ferriere, F. Kwiaktowski, S. Chevillard, F. Finat-Duclos, P. Verrelle, and F. Penault-Llorca. Single static view 99mTc-sestamibi scintimammography predicts response to neoadjuvant chemotherapy and is related to MDR expression. Int. J. Oncol. 20: 1049–1055 (2002).

    Google Scholar 

  137. O. Fardel and V. Lecureur. and A. Guillouzo A. The Pglycoprotein multidrug transporter. Gen. Pharmacol. 27:1283-1291 (1996).

  138. J. M. Ford. Modulators of multidrug resistance. Preclinical studies. Hematol. Oncol. Clin. North Am. 9:337–361 (1995).

    Google Scholar 

  139. D. R. Ferry, H. Traunecker, and D. J. Kerr. Clinical trials of P-glycoprotein reversal in solid tumors. Eur. J. Cancer 32A: 1070–1081 (1996).

    Google Scholar 

  140. H. Thomas and H. M. Coley. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting Pglycoprotein. Cancer Control 10:159–165 (2003).

    Google Scholar 

  141. M. Roe, A. Folkes, P. Ashworth, J. Brumwell, L. Chima, S. Hunjan, I. Pretswell, W. Dangerfield, H. Ryder, and P. Charlton. Reversal of P-glycoprotein-mediated multidrug resistance by novel anthranilamide derivatives. Bioorg. Med. Chem. Lett. 9:595–600 (1999).

    Google Scholar 

  142. L. Van Zuylen, K. Nooter, and A. Sparreboom. and J. Verweij. Development of multidrug-resistance convertors: sense or nonsense? Invest. New Drugs 51:1427–1437 (1992).

    Google Scholar 

  143. J. Greenwood. Characterization of a rat retinal endothelial cell culture and the expression of P-glycoprotein in brain and retinal endothelium in vitro. J. Neuroimmunol. 39:123–132 (1992).

    Google Scholar 

  144. E. J. Hegmann, H. C. Bauer, and R. S. Kerbel. Expression and functional activity of P-glycoprotein in cultured cerebral capillary endothelial cells. Cancer Res. 52:6969–6975 (1992).

    Google Scholar 

  145. L. Jette, J. F. Pouliot, G. F. Murphy, and R. Beliveau. Isoform I (mdr3) is the major form of P-glycoprotein expressed in mouse brain capillaries. Evidence for cross-reactivity of antibody C219 with an unrelated protein. Biochem. J. 305:761–766 (1995).

    Google Scholar 

  146. D. Lechardeur, V. Phung-Ba, P. Wils, and D. Scherman. Detection of the multidrug resistance of P-glycoprotein in healthy tissues: the example of the blood-brain barrier. Ann. Biol. Clin. 54:31–36 (1996).

    Google Scholar 

  147. D. Lechardeur and D. Scherman. Functional expression of the P-glycoprotein mdr in primary cultures of bovine cerebral capillary endothelial cells. Cell Biol. Toxicol. 11:283–293 (1995).

    Google Scholar 

  148. D. J. Begley, D. Lechardeur, Z. D. Chen, C. Rollinson, M. Bardoul, F. Roux, D. Scherman, and N. J. Abbott. Functional expression of P-glycoprotein in an immortalized cell line of rat brain endothelial cells, RBE4. J. Neurochem. 67:988–995 (1996).

    Google Scholar 

  149. J. M. Rose, S. L. Peckham, J. L. Scism, and K. L. Audus. Evaluation of the role of P-glycoprotein in ivermectin uptake by cultures of bovine brain microvessel endothelial cells. Neurochem. Res. 23:203–209 (1998).

    Google Scholar 

  150. S. Seetharaman, M. A. Barrand, L. Maskell, and R. J. Scheper. Multidrug resistance-related transport proteins in isolated human brain microvessels and in cells cultured from these isolates. J. Neurochem. 70:1151–1159 (1998).

    Google Scholar 

  151. A. Regina, A. Koman, M. Piciotti, and B. El Hafny. M.S. Center, P.O. Bergmann, P.O. Couraud, and F. Roux. Mrp1 multidrug resistance-associated protein and P-glycoprotein expression in rat brain microvessel endothelial cells. J. Neurochem. 71:705–715 (1998).

    Google Scholar 

  152. A. Regina, I. A. Romero, J. Greenwood, P. Adamson, J. M. Bourre, P. O. Couraud, and F. Roux. Dexamethasone regulation of P-glycoprotein activity in an immortalized rat brain endothelial cell line, GPNT. J. Neurochem. 73:1954–1963 (1999).

    Google Scholar 

  153. R. Bendayan, G. Lee, and M. Bendayan. Functional expression and localization of P-glycoprotein at the blood-brain barrier. Microsc. Res. Tech. 57:365–380 (2002).

    Google Scholar 

  154. M. Demeule, D. Shedid, E. Beaulieu, R. F. Del Maestro, A. Moghrabi, P. B. Ghosn, R. Moumdjian, F. Berthelet, and R. Beliveau. Expression of multidrug resistance P-glycoprotein (MDR1) in human brain tumors. Int. J. Cancer 93:62–66 (2001).

    Google Scholar 

  155. I. Sugawara, H. Hamada, T. Tsuruo, and S. Mori. Specialized localization of P-glycoprotein recognized by MRK16 monoclonal antibody in endothelial cells of the brain and the spinal cord. Jpn. J. Cancer Res. 81:727–730 (1990).

    Google Scholar 

  156. E. Beaulieu, M. Demeule, L. Ghitescu, and R. Beliveau. Pglycoprotein is strongly expressed in the luminal membranes of the endothelium of blood vessels in the brain. Biochem. J. 326: 539–544 (1997).

    Google Scholar 

  157. L. Jette, B. Tetu, and R. Beliveau. High levels of P-glycoprotein detected in isolated brain capillaries. Biochim. Biophys. Acta 1150:147–154 (1993).

    Google Scholar 

  158. M. Demeule, A. Regina, J. Jodoin, A. Laplante, C. Dagenais, F. Berthelet, A. Moghrabi, and R. Beliveau. Drug transport to the brain: Key roles for the efflux pump P-glycoprotein in the bloodbrain barrier. Vasc. Pharmacol. 38:339–348 (2002).

    Google Scholar 

  159. P. L. Golden and W. M. Pardridge. P-glycoprotein on atrocyte foot processes of unfixed isolated human brain capillaries. Brain Res. 819:143–146 (1999).

    Google Scholar 

  160. K. Toth, M. M. Vaughan, N. S. Peress, H. K. Slocum, and Y. M. Rustum. MDR1 P-glycoprotein is expressed by endothelial cells of newly formed capillaries in human gliomas but is not expressed in the neovasculature of other primary tumors. Am. J. Pathol. 149:853–858 (1996).

    Google Scholar 

  161. T. Sawada, N. Kato, N. Sakayori, Y. Takekawa, and M. Kobayashi. Expression of the multidrug resistance P-glycoprotein (P-gp, MDR1) by endothelial cells of the neovasculature in central nervous system tumors. Brain Tumor Pathol. 16:23–27 (1999).

    Google Scholar 

  162. Y. Lavie, G. Fiucci, and M. Liscovitch. Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells. J. Biol. Chem. 273:32380–32383 (1998).

    Google Scholar 

  163. C. P. Yang, F. Galbiati, D. Volonte, S. B. Horwitz, and M. P. Lisanti. Upregulation of caveolin-1 and caveolae organelles in Taxol-resistant A549 cells. FEBS Lett. 439:368–372 (1998).

    Google Scholar 

  164. M. Demeule, J. Jodoin, D. Gingras, and R. Beliveau. Pglycoprotein is localized in caveolae in resistant cells and in brain capillaries. FEBS Lett. 466:219–224 (2000).

    Google Scholar 

  165. J. E. Schnitzer, P. Oh, and E. Pinney. and J. Allard. Filipinsensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell Biol. 127:1217–1232 (1994).

    Google Scholar 

  166. L. A. Doyle, W. Yang, L. V. Abruzzo, T. Krogmann, Y. Gao, A. K. Rishi, and D. D. Ross. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA 95:15665–15670 (1998).

    Google Scholar 

  167. H. C. Cooray, C. G. Blackmore, L. Maskell, and M. A. Barrand. Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport 13:2059–2063 (2002).

    Google Scholar 

  168. T. Eisenblatter and H. J. Galla. A new multidrug resistance protein at the blood-brain barrier. Biochem. Biophys. Res. Commun. 293:1273–1278 (2002).

    Google Scholar 

  169. T. Eisenblatter, S. Huwel, and H. J. Galla. Characterization of the brain multidrug resistance protein (BMDP/ABCG2/BCRP) expressed at the blood-brain barrier. Brain Res. 971:221–231 (2003).

    Google Scholar 

  170. T. Litman, T. E. Druley, W. D. Stein, and S. E. Bates. From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell. Mol. Life Sci. 58:931–959 (2001).

    Google Scholar 

  171. P. Ballerini, P. D. Lorio, R. Ciccarelli, E. Nargi, L. D'Alimonte, U. Traversa, M. P. Rathbone, and F. Caciagli. Glial cells express multiple ATP binding cassette proteins which are involved in ATP release. Neuro report 13:1789–1792 (2002).

    Google Scholar 

  172. S. Spiegl-Kreinecker, J. Buchroithner, L. Elbling, E. Steiner, G. Wurm, A. Bodenteich, J. Fischer, M. Micksche, and W. Berger. Expression and functional activity of the ABC-transporter proteins P-glycoprotein and multidrug-resistance protein 1 in human brain tumor cells and astrocytes. J. Neurooncol. 57:27–36 (2002).

    Google Scholar 

  173. C. A. Doige and F. J. Sharom. Transport properties of Pglycoprotein in plasma membrane vesicles from multidrugresistant Chinese hamster ovary cells. Biochim. Biophys. Acta 1109:161–171 (1992).

    Google Scholar 

  174. R. B. Kim, M. F. Fromm, C. Wandel, B. Leake, J. J. Alastair, D. M. Roden, and G. R. Wilkinson. The drug transporter Pglycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J. Clin. Invest. 101:289–294 (1998).

    Google Scholar 

  175. M. Bredel. Anticancer drug resistance in primary human brain tumors. Brain Res. Rev. 35:161–204 (2001).

    Google Scholar 

  176. T. Matsumoto, E. Tani, K. Kaba, N. Kochi, H. Shindo, Y. Yamamoto, and H. Sakamoto, and J. Furuyama. Amplification and expression of multidrug resistance gene in human glioma cell lines. J. Neurosurg. 72:96–101 (1990).

    Google Scholar 

  177. I. Becker, K. F. Becker, and R. Meyermann. and V. Hollt. The multidrug resistance gene MDR1 is expressed in human glial tumors. Acta Neuropathol. 82:516–519 (1991).

    Google Scholar 

  178. D. M. Tishler and C. Raffel. Development of multidrug resistance in a primitive neuroectodermal tumor cell line. J. Neurosurg. 76:502–506 (1992).

    Google Scholar 

  179. M. W. Nabors, C. A. Griffin, B. A. Zehnbauer, R. H. Hruban, P. C. Phillips, S. A. Grossman, H. Brem, and O. M. Colvin. Multidrug resistance gene (MDR1) expression in human brain tumors. J. Neurosurg. 75:941–946 (1991).

    Google Scholar 

  180. B. C. Liang. Effects of hypoxia on drug resistance phenotype and genotype in human glioma cell lines. J. Neurooncol. 29:149–155 (1996).

    Google Scholar 

  181. M. Mousseau, C. Chauvin, M. F. Nissou, M. Chaffanet, D. Plantaz, B. Pasquier, R. Schaerer, and A. Benabid. A study of the expression of four chemoresistance-related genes in human primary and metastatic brain tumors. Eur. J. Cancer 29A:753–759 (1993).

    Google Scholar 

  182. P. von Bossanyi, S. Diete, M. Dietzmann, M. W. Kirches, and E. Kirches. Immunohistochemical expression of P-glycoprotein and glutathione S-transferases in cerebral gliomas and response to chemotherapy. Acta Neuropathol. 94:605–611 (1997).

    Google Scholar 

  183. K. Yokogami, H. Kawano, T. Moriyama, H. Uehara, T. Sameshima, T. Oku, T. Goya, S. Wakisaka, S. Nagamachi, S. Jinnouchi, and S. Tamura. Application of SPET using technetium-99m sestamibi in brain tumors and comparison with expression of the MDR1 gene: is it possible to predict the response to chemotherapy in patients with gliomas by means of 99m Tcsestamibi SPET? Eur. J. Nucl. Med. 25:401–409 (1998).

    Google Scholar 

  184. Y. Tanaka, Y. Abe, A. Tsugu, Y. Takamiya, A. Akatsuka, T. Tsuruo, H. Yamazaki, Y. Ueyama, O. Sato, N. Tamaoki, Y. Takamiya, A. Akatsuka, T. Tsuruo, H. Yamazaki, Y. Ueyama, O. Sato, and N. Tamaoki. Ultrastructural localization of Pglycoprotein on capillary endothelial cells in human gliomas. Virchows Arch. 425:133–138 (1994).

    Google Scholar 

  185. A. Korshunov, A. Golanv, R. Sycheva, I. Pronin, and L. Fadeeva. Prognostic value of the immunoexpression of chemoresistance-related proteins in cerebral glioblastomas: an analysis of 168 cases. Neuropathology 19:143–149 (1999).

    Google Scholar 

  186. J. M. Gallo, S. Li, P. Guo, and K. Reed. and J. Ma. The effect of P-glycoprotein on paclitaxel brain and brain tumor distribution in mice. Cancer Res. 63:5114–5117 (2003).

    Google Scholar 

  187. X. Decleves, A. Fajac, J. Lehmann-Che, M. Tardy, C. Mercier, I. Hurbain, J. L. Laplanche, J. F. Bernaudin, and J. M. Scherr mann. Molecular and functional MDR1-P-gp and MRPs expression in human glioblastoma multiforme cell lines. Int. J. Cancer 98:173–180 (2002).

    Google Scholar 

  188. F. Leweke, M. S. Damian, C. Schlindler, and W. Schachenmayr. Multidrug resistance in glioblastoma: chemosensitivity testing and immunohistochemical demonstration of P-glycoprotein. Pathol. Res. Pract. 194:149–155 (1998).

    Google Scholar 

  189. H. J. Schluesener and R. Meyermann. Spontaneous Multidrug transport in human glioma cells is regulated by transforming growth factors type beta. Acta Neuropathol. 81:641–648 (1991).

    Google Scholar 

  190. J. W. Henson, C. Cordon-Cardo, and J. B. Posner. Pglycoprotein expression in brain tumors. J. Neurooncology 14: 37–43 (1992).

    Google Scholar 

  191. G. J. Dore, P. Correll, Y. Li, J. M. Kaldor, D. A. Cooper, and B. J. Brew. Changes to AIDs dementia complex in the era of highly active antiretroviral therapy. AIDS 13:1249–1253 (1999).

    Google Scholar 

  192. J. H. McArthur, O. A. Selnes, L. P. Jacobson, B. R. Visscher, M. Concha, and A. Saah. Dementia in AIDS patients: incidence and risk factors. Neurology 43:2245–2252 (1993).

    Google Scholar 

  193. J. A. McArthur, N. Haughey, S. Gartner, K. Conant, C. Pardo, V. Nath, and N. Sacktor. Human immunodeficiency virusassociated dementia: an evolving disease. J. Neurovirol. 9:205–221 (2003).

    Google Scholar 

  194. V. Valcour, B. Shiramizu, C. Shikuma, P. Poff, M. Watters, J. Grove, O. Selnes, and N. Sacktor. Neurocognitive function among older compared to younger HIV-1 seropositive individuals. J. Neurovirol. 8:69 (2002).

    Google Scholar 

  195. G. J. Dore, A. McDonald, Y. Li, J. M. Kaldor, and B. Brew. Marked improvement in survival following AIDS dementia complex in the era of highly active antiretroviral therapy. AIDS 17:1539–1545 (2003).

    Google Scholar 

  196. B. Navia, B. D. Jordon, and R. W. Price. The AIDS dementia complex: I. Clinical features. Ann. Neurol. 19:517–524 (1986).

    Google Scholar 

  197. G. J. Nuovo. In situ detection of polymerase chain reactionamplified HIV-1 nucleic acids and tumor necrosis factor-_ RNA in the central nervous system. Am. J. Pathol. 144:659–666 (1994).

    Google Scholar 

  198. O. Bagasra, E. Lavi, L. Bobroski, K. Khalili, J. P. Pestaner, R. Tawadros, and R. J. Pomerantz. Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: identification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS 10:573–585 (1996).

    Google Scholar 

  199. L. G. Epstein and H. E. Gendelman. Human immunodeficiency virus type 1 infection of the nervous system: pathogenic mechanisms. Ann. Neurol. 33:429–436 (1993).

    Google Scholar 

  200. M. Kaul, G. A. Garden, and S. A. Lipton. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410: 988–994 (2001).

    Google Scholar 

  201. D. M. Rausch, E. A. Murray, and L. E. Eiden. The SIV-infected rhesus monkey model for HIV-associated dementia and implications for neurological diseases. J. Leukocyte Biol. 65:466–474 (1999).

    Google Scholar 

  202. A. Nath. Pathobiology of human immunodeficiency virus dementia. Semin. Neurol. 19:113–127 (1999).

    Google Scholar 

  203. T. W. Chun, L. Stuyver, S. B. Mizell, L. A. Ehler, J. A. Mican, M. Baseler, A. L. Lloyd, M. A. Nowak, and A. S. Fauci. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl. Acad. Sci. USA 94:13193–13197 (1997).

    Google Scholar 

  204. S. G. Deeks, M. Smith, M. Holodniy, and J. O. Kahn. HIV-1 protease inhibitors. A review for clinicians. JAMA 277:145–153 (1997).

    Google Scholar 

  205. J. Alsenz, H. Steffen, and R. Alex. Active apical secretory efflux of the HIV protease inhibitors saquinavir and ritonavir in Caco-2 cell monolayers. Pharm. Res. 15:423–428 (1998).

    Google Scholar 

  206. L. Profit, V. A. Eagling, and D. J. Back. Modulation of Pglycoprotein function in human lymphocytes and Caco-2 cell monolayers by HIV-1 protease inhibitors. AIDS 13:1623–1627 (1999).

    Google Scholar 

  207. A. E. Kim, J. M. Dintaman, D. S. Waddell, and J. A. Silverman. Saquinavir, an HIV protease inhibitor, is transported by Pglycoprotein. J. Pharmacol. Exp. Ther. 286:1439–1445 (1998).

    Google Scholar 

  208. C. B. Washington, H. R. Whiltshire, M. Man, T. Moy, S. R. Harris, E. Worth, P. Weigl, Z. Liang, D. Hall, L. Marriott, and T. F. Blaschke. The disposition of saquinavir in normal and P-glycoprotein deficient mice, rats and in cultured cells. Drug Metab. Dispos. 28:1058–1062 (2000).

    Google Scholar 

  209. E. F. Choo, B. Leake, C. Wandel, H. Imamura, A. J. Wood, G. R. Wilkinson, and R. B. Kim. Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab. Dispos. 28:655–660 (2002).

    Google Scholar 

  210. S. Gollapudi and S. Gupta. Human immunodeficiency virus Iinduced expression of P-glycoprotein. Biochem. Biophys. Res. Commun. 171:1002–1007 (1990).

    Google Scholar 

  211. A. Andreana, S. Aggarwal, S. Gollapudi, D. Wien, T. Tsuruo, and S. Gupta. Abnormal expression of a 170-kilodalton Pglycoprotein encoded by MDR1 gene, a metabolically active efflux pump, in CD4+ and CD8+ T cells from patients with human immunodeficiency virus type 1 infection. AIDS Res. Hum. Retroviruses 12:1457–1462 (1996).

    Google Scholar 

  212. W. Malorni, M. B. Lucia, G. Rainaldi, R. Cauda, M. Cianfiglia, G. Donelli, and L. Ortona. Intracellular expression of P170 glycoprotein in peripheral blood mononuclear cell subsets from healthy donors and HIV infected patients. Haematologica 83: 12–20 (1998).

    Google Scholar 

  213. E. R. Meaden, P. G. Hoggard, B. Maher, S. H. Khoo, and D. J. Back. Expression of P-glycoprotein and multidrug resistanceassociated protein in healthy volunteers and HIV-infected patients. AIDS Res. Hum. Restroviruses 17:1329–1332 (2001).

    Google Scholar 

  214. C. Agrati, F. Poccia, S. Topino, P. Narciso, C. Selva, L. P. Pucillo, G. D'Offizi, G. Antonelli, F. Bellomi, O. Turriziani, and F. Bambacioni. P-glycoprotein expression by peripheral blood mononuclear cells from human immunodeficiency virusinfected patients is independent from response to highly active antiretroviral therapy. Clin. Diagnostic Lab. Immunol. 10:191–192 (2003).

    Google Scholar 

  215. M. D. Perloff, L. L. Von Moltke, J. E. Marchand, and D. J. Greenblatt. Ritonavir induces P-glycoprotein expression, multidrug resistance-associated protein (MRP1) expression, and drug transporter-mediated activity in a human intestinal cell line. J. Pharm. Sci. 90:1829–1837 (2001).

    Google Scholar 

  216. L. Huang, S. A. Wring, J. L. Woolley, K. R. Brouwer, C. Serabjit-Singh, and J. W. Polli. Induction of P-glycoprotein and cytochrome P450 3A by HIV protease inhihitors. Drug Metab. Dispos. 29:754–760 (2001).

    Google Scholar 

  217. E. R. Meaden, P. G. Hoggard, P. Newton, J. F. Tjia, D. Aldam, D. Cornforth, J. Llyod, I. Williams, D. J. Back, and S. H. Khoo. P-glycoprotein and MRP1 expression and reduced ritonavir and saquinavir accumulation in HIV-infected individuals. J. Antimicrob. Chemother. 50:583–588 (2002).

    Google Scholar 

  218. M. L. Dupuis, M. Flego, A. Molinari, and M. Cianfriglia. Saquinavir induces stable and functional expression of the multidrug transporter P-glycoprotein in human CD4 T-lymphoblastoid CEMrev cells. HIV Med. 4:338–345 (2003).

    Google Scholar 

  219. B. Chandler, L. Almond, J. Ford, A. Owen, P. Hoggard, S. Khoo, and D. Back. The effects of protease inhibitors and nonnucleoside reverse transcriptase inhibitors on P-glycoprotein expression in peripheral blood mononuclear cells in vitro. J. Acquir. Immune Defic. Syndr. 33:551–556 (2003).

    Google Scholar 

  220. N. A. Roberts. Drug-resistance patterns of saquinavir and other HIV protease inhibitors. AIDS 9:S27–S32 (1995).

    Google Scholar 

  221. P. Bossi, O. Legrand, A. M. Faussat, M. Legrand, F. Bricaire, J. P. Marie, H. Agut, B. Diquet, C. Katlama, J. M. Huraux, and V. Calvez. P-glycoprotein in blood CD4 cells of HIV-1 infected patients treated with protease inhibitors. HIV Med. 4:67–71 (2003).

    Google Scholar 

  222. K. Yusa, T. Oh-Hara, S. Tsukahara, W. Satoh, and T. Tsuruo. Cross-resistance to anti-HIV nucleoside analogs in multidrugresistant human cells. Biochem. Biophys. Res. Commun. 169: 986–990 (1990).

    Google Scholar 

  223. D. Mayers. Rational approaches to resistance: nucleoside analogues. AIDS 10:S9–13 (1996).

    Google Scholar 

  224. T. R. Browne and G. L. Holmes. Epilepsy. N. Engl. J. Med. 344:1145–1151 (2001).

    Google Scholar 

  225. National Institutes of Health. National Institutes of Health Consensus Conference: surgery for epilepsy. J. Am. Med. Assoc. 264:729–733 (1990).

    Google Scholar 

  226. J. W. Sander. Some aspects of prognosis in the epilepsies: a review. Epilepsia 34:1007–1016 (1993).

    Google Scholar 

  227. G. Regesta and P. Tanganelli. Clinical aspects and biological bases of drug resistant epilepsies. Epilepsy Res. 34:109–122 (1999).

    Google Scholar 

  228. D. M. Tishler, K. T. Weinberg, D. R. Hinton, N. Barbaro, G. M. Annett, and C. Raffel. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia 36:1–6 (1995).

    Google Scholar 

  229. S. M. Dombrowski, S. Y. Desai, M. Marroni, L. Cucullo, K. Goodrich, W. Bingaman, M. R. Mayberg, L. Bengez, and D. Janigro. Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia 42:1501–1506 (2001).

    Google Scholar 

  230. S. M. Sisodiya, J. Heffernan, and M. V. Aquier. Over-expression of P-glycoprotein in malformations of cortical development. Neuroreport 10:3437–3441 (1999).

    Google Scholar 

  231. S. M. Sisodiya, W. R. Lin, B. N. Harding, M. V. Squier, and M. Thom. Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy. Brain 125:22–31 (2002).

    Google Scholar 

  232. A. Lazarowski, G. Sevlever, A. Taratuto, M. Massaro, and A. Rabinowicz. Tuberous sclerosis associated with MDR1 gene expression and drug-resistant epilepsy. Pediatr. Neurol. 21:731–734 (1999).

    Google Scholar 

  233. S. M. Sisodiya, W. R. Lin, M. V. Squier, and M. Thom. Multidrug resistance protein 1 in focal cortical dysplasia. Lancet 357: 42–43 (2001).

    Google Scholar 

  234. E. Aronica, J. A. Gorter, H. Jansen, C. W. M. Van Veelen, P. C. Van Rijen, S. Leenstra, M. Ramkema, G. L. Scheffer, R. J. Scheper, and D. Troost. Expression and cellular distribution of multidrug transporter proteins in two major causes of medically intractable epilepsy: focal cortical dysplasia and glioneuronal tumors. Neuroscience 118:417–429 (2003).

    Google Scholar 

  235. M. Rizzi, S. Caccia, G. Guiso, C. Richichi, J. A. Gorter, E. Aronica, M. Aliprandi, R. Bagnati, R. Fanelli, M. D'Incalci, R. Samanin, and A. Vezzani. Limbic seizures induce P-glycoprotein in rodent brain: functional implications for pharmaoresistance. J. Neurosci. 22:5833–5839 (2002).

    Google Scholar 

  236. W. Loscher and H. Potschka. Role of multidrug transporters in pharmacoresistance to antiepeileptic drugs. J. Pharmacol. Exp. Ther. 301:7–14 (2002).

    Google Scholar 

  237. H. Potschka and W. Loscher. In vivo evidence for P-glycoprotein mediated transport of phenytoin at the blood brain barrier of rats. Epilepsia 42:1231–1240 (2001).

    Google Scholar 

  238. H. Potschka, M. Fedrowitz, and W. Loscher. P-glycoprotein mediated efflux of Phenobarbital, lamotrigine, and felbamate at the blood brain barrier: evidence from microdialysis experiments in rats. Neurosci. Lett. 327:173–176 (2002).

    Google Scholar 

  239. A. Owen, M. Pirmohamed, J. N. Tettey, P. Morgan, D. Chadwick, and K. Park. Carbamazepine is not a substrate for Pglycoprotein. Br. J. Clin. Pharmacol. 51:345–349 (2001).

    Google Scholar 

  240. E. N. Benvenist, V. T. Nguyen, and G. M. O'Keefe. Immunological aspects of microglia: relevance to Alzheimer's disease. Neurochem. Int. 39:381–391 (2001).

    Google Scholar 

  241. D. J. Selkoe. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 399:A23–A31 (1999).

    Google Scholar 

  242. D. Giulian. Neurogenetics '99. Microglia and the immune pathology of Alzheimer disease. Am. J. Hum. Genet. 65:13–18 (1999).

    Google Scholar 

  243. T. Uchihara, H. Akiyama, H. Kondo, and K. Ikeda. Activated microglial cells are colocalized with perivascular deposits of amyloid-_ protein in Alzheimer's disease brain. Stroke 28:1948–1950 (1997).

    Google Scholar 

  244. J. L. Cummings, H. V. Vinters, G. M. Cole, and A. S. Khacha-turian. Alzheimer's disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 51:S2–S17 (1998).

    Google Scholar 

  245. D. J. Selkoe. Towards a comprehensive theory for Alzheimer's disease. Hypothesis: Alzheimer's disease is caused by the cerebral accumulation and cytotoxicity of amyloid B-protein. Ann. N. Y. Acad. Sci. 924:17–25 (2000).

    Google Scholar 

  246. F. C. Lam, R. Liu, A. B. Shapiro, J. M. Renoir, F. J. Sharom, and P. B. Reiner. B-amyloid efflux mediated by P-glycoprotein. J. Neurochem. 76:1121–1128 (2001).

    Google Scholar 

  247. S. Vogelgesang, I. Cascorbi, E. Schroeder, J. Pahnke, H. K. Kroemer, W. Siegmund, C. Kunert-Keil, L. C. Walker, and R. W. Warzok. Deposition of Alzheimer's B-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics 12:535–541 (2002).

    Google Scholar 

  248. C. Haass, M. G. Schlossmacher, A. Y. Hung, C. Vigo-Pelfrey, A. Mellon, B. L. Ostaszewki, I. Lieberburg, E. H. Koo, D. Schenk, D. B. Templow, and D. J. Selkoe. Amyloid-B peptide is produced by cultured cells during normal metabolism. Nature 359: 322–325 (1992).

    Google Scholar 

  249. M. Shoji, T. E. Golde, J. Ghiso, T. T. Cheung, S. Estus, L. M. Shaffer, X. D. Cai, D. M. McKay, R. Tintner, B. Frangione and S. G. Younkin. Production of the Alzheimer amyloid-B protein by normal proteolytic processing. Science 258:126–129 (1992).

    Google Scholar 

  250. J. Busciglio, D. H. Gabuzda, P. Matsudaira, and B. A. Yankner. Generation of B-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc. Natl. Acad. Sci. USA 90:2092–2096 (1993).

    Google Scholar 

  251. J. M. Croop. Evolutionary relationships among ABC transporters. Methods Enzymol. 292:101–116 (1998).

    Google Scholar 

  252. S. V. Ambudkar, S. Dey, C. A. Hrycyna, M. Ramachandra, I. Pastan, and M. M. Gottesman. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol. 39:361–398 (1999).

    Google Scholar 

  253. T. Yakushi, K. Masuda, S. I. Narita, and H. Tokuda. A new ABC transporter mediating the detachment of lipid-modified proteins from membranes. Nat. Cell Biol. 2:212–218 (2000).

    Google Scholar 

  254. D. J. Gruol, M. C. Zee, J. Trotter, and S. Bourgeois. Reversal of multidrug resistance by RU 486. Cancer Res. 54:3088–3091 (1994).

    Google Scholar 

  255. V. Marsaud, C. Mercier-Bodard, D. Fortin, S. Le Bihan, and J. M. Renoir. Dexamethasone and triamcinolone acetonide accumulation in mouse fibroblasts is differently modulated by the immunosuppressants cyclosporin A, FK506, rapamycin and their analogues, as well as by other P-glycoprotein ligands. J. Steroid Biochem. Mol. Biol. 66:11–25 (1998).

    Google Scholar 

  256. K. Bogman, A. K. Peyer, M. Torok, E. Kusters, and J. Drewe. HMG-CoA reductase inhibitors and P-glycoprotein modulation. Br. J. Pharmacol. 132:1183–1192 (2001).

    Google Scholar 

  257. G. J. Hooiveld, T. A. Vos, G. L. Scheffer, H. van Goor, H. Koning, V. Bloks, A. E. Loot, D. K. Meijer, P. L. Jansen, F. Kuipers, and M. Muller. 3-hydroxy-3-methylglutaryl-conenzyme A reductase inhibitors (statins) induce hepatic expression of the phospholipid translocase mdr2 in rats. Gastroenterology 117: 678–687 (1999).

    Google Scholar 

  258. K. Fassbender, M. Simons, C. Bergmann, M. Stroick, D. Lutjohann, P. Keller, H. Runz, S. Kuhl, T. Bertsch, K. von Bergmann, M. Hennerici, K. Beyreuther, and T. Hartmann. Simvastatin strongly reduces levels of Alzheimer's disease B-amyloid peptides A_42 and A_40 in vitro and in vivo. Proc. Natl. Acad. Sci. USA 98:5856–5861 (2001).

    Google Scholar 

  259. K. L. Davis, L. J. Thal, E. R. Gamzu, C. S. Davis, R. F. Woolson, S. I. Gracon, D. A. Drachman, L. S. Schneider, P. J. Whitehouse, and T. M. Hoover. A double-blind, placebo-controlled multicenter study of tacrine for Alzheimer's disease. The Tacrine Collaborative Study Group. N. Engl. J. Med. 327:1253–1259 (1992).

    Google Scholar 

  260. S. L. Rogers, M. R. Farlow, R. S. Doody, R. Mohs, and L. T. Friedhoff. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer's disease. Donepezil Study Group. Neurology 50:136–145 (1998).

    Google Scholar 

  261. M. Rosler, R. Anand, A. Cicin-Sain, S. Gauthier, Y. Agid, P. Dal-Bianco, H. B. Stahelin, R. Hartman, and M. Gharabawi. Efficacy and safety of rivastigmine in patients with Alzheimer's disease: International randomized controlled trial. BMJ 318: 633–638 (1999).

    Google Scholar 

  262. M. A. Raskind, E. R. Peskind, T. Wessel, and W. Yuan. Galantamine in AD: A 6-month randomized, placebo-controlled trial with a 6-month extension. The Galantamine USA-1 Study Group. Neurology 54:2261–2268 (2000).

    Google Scholar 

  263. P. B. Molinoff. AB modulation: the next generation of AD therapeutics. Neurobiol. Aging 21:S136 (2000).

    Google Scholar 

  264. D. B. Schenk, R. Barbour, W. Dunn, G. Gordon, H. Grajeda, T. Guido, K. Hu, J. Huang, K. Johnson-Wood, K. Khan, D. Kholodenko, M. Lee, Z. Liao, I. Lieberburg, R. Motter, L. Mutter, F. Soriano, G. Shopp, N. Vasquez, C. Vandevert, S. Walker, M. Wogulis, T. Yednock, D. Games, and P. Seubert. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177 (1999).

    Google Scholar 

  265. D. B. Schenk, P. Seubert, and I. Liberburg. and J. Wallace. Beta-peptide immunization: a possible new treatment for Alzheimer disease. Arch. Neurol. 57:934–936 (2000).

    Google Scholar 

  266. Y. Ben-Shlomo and K. Sieradzan. Idiopathic parkinson's disease: epidemiology, diagnosis and management. Br. J. Gen. Pract. 45:261–268 (1995).

    Google Scholar 

  267. T. Kitada, S. Asakawa, N. Hattori, H. Matsumine, Y. Yamamura, S. Minoshima, M. Yokochi, Y. Mizuno, and N. Shimizu. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608 (1998).

    Google Scholar 

  268. D. Maimone, R. Dominici, and L. M. Grimaldi. Pharmacogenomics of neurodegenerative diseases. Eur. J. Pharmacol. 413: 11–29 (2001).

    Google Scholar 

  269. J. W. Langston, P. Ballard, J. W. Tetrud, and I. Irwin. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980 (1983).

    Google Scholar 

  270. W. Koller, B. Vetere-Overfield, C. Gray, C. Alexander, T. Chin, J. Dolezal, R. Hassanein, and C. Tanner. Environmental risk factors in Parkinson's disease. Neurology 40:1218–1221 (1990).

    Google Scholar 

  271. K. M. Semchuk, E. J. Love, and R. G. Lee. Parkinson's disease and exposure to agricultural work and pesticide chemicals. Neurology 42:1328–1335 (1992).

    Google Scholar 

  272. R. Betarbet, T. B. Sherer, G. MacKenzie, M. Garcia-Osuna, A. V. Panov, and J. T. Greenamyre. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci. 3:1301–1306 (2000).

    Google Scholar 

  273. P. M. Christensen, P. C. Gotzsche, and K. Brosen. The sparteine/ debrisoquine (CYP2D6) oxidation polymorphism and the risk of Parkinson's disease: a meta-analysis. Pharmacogenetics 8:473–479 (1998).

    Google Scholar 

  274. A. Rostami-Hodjegan, M. S. Lennard, H. F. Woods, and G. T. Tucker. Meta-analysis of studies of the CYP2D6 polymorphism in relation to lung cancer and Parkinson's disease. Pharmacogenetics 8:227–238 (1998).

    Google Scholar 

  275. E. K. Tan, M. Khajavi, J. I. Thornby, S. Nagamitsu, J. Jankovic, and T. Ashizawa. Variability and validity of polymorphism association studies in Parkinson's disease. Neurology 55:533–538 (2000).

    Google Scholar 

  276. A. H. Schinkel, E. Wagenaar, C. A. Mol, and L. van Deemter. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacologic activity of many drugs. J. Clin. Invest. 97:2517–2524 (1996).

    Google Scholar 

  277. K. L. Mealey, S. A. Bentjen, J. M. Gay, and G. H. Cantor. Ivermectin sensitivity in collies is associated with a deletion mutation of the mdr1 gene. Pharmacogenetics 11:727–733 (2001).

    Google Scholar 

  278. R. L. Juliano and V. Ling. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455:152–162 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reina Bendayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, G., Bendayan, R. Functional Expression and Localization of P-glycoprotein in the Central Nervous System: Relevance to the Pathogenesis and Treatment of Neurological Disorders. Pharm Res 21, 1313–1330 (2004). https://doi.org/10.1023/B:PHAM.0000036905.82914.8e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000036905.82914.8e

Navigation