Skip to main content
Log in

Measurements of Temperature and Electron Number Density in a dc Argon–Nitrogen Plasma Torch—Supersonic Operation

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The diagnostics study on supersonic argon/nitrogen plasma jets expanded into a low-pressure test chamber is carried out by means of emission spectroscopy and enthalpy probe measurement techniques. The spatial distributions of electron density, temperatures, and associated shock structure effects in plasma jets are investigated in conjunction with their direct dependency upon the chamber pressure. The experimental results show the occurrence and the position of different zones; i.e., supersonic expansion, stationary shock waves and subsonic jet at pressures below 51 kPa. Flow fluctuations due to the oblique shock wave at 39 kPa background pressure are observed and discussed. The electron density profiles show variations along the plasma axis that coincide with the position of the shock waves. The experimental results show the transition from the moderately under-expanded to the strongly under-expanded jet structure induced by lowering of the chamber pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Fauchais and A. Vardelle, IEEE Trans. Plasma Sci. 25, 6(1997).

    Google Scholar 

  2. M. I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas; Fundamentals and Applications, 1, Plenum, New York, 1994.

    Google Scholar 

  3. M. I. Boulos, IEEE Trans. Plasma Sci. 19, 6(1991).

    Google Scholar 

  4. W. L. T. Chen, J. Heberlein, and E. Pfender, Plasma Chem. Plasma Process. 14, 3(1994).

    Google Scholar 

  5. S. E. Selezneva, M. Rajabian, D. Gravelle, and M. I. Boulos, J. Phys. D 34, 18(2001).

    Google Scholar 

  6. P. Han and X. Chen, Thin Solid Films 390, 181-185 (2001).

    Google Scholar 

  7. B. Jodoin, P. Proulx, and Y. Mercadier, AIAA J. 36, 4(1998).

    Google Scholar 

  8. S. E. Selezneva, V. Sember, D. V. Gravelle, and M. I. Boulos, J. Phys. D 35, 12(2002).

    Google Scholar 

  9. C. H. Chang and J. D. Ramshaw, Phys. Plasmas 1, 11(1994).

    Google Scholar 

  10. K. S. Abdol-Hamid, AIAA J. 89-2196(1989).

  11. M. Sabsabi, S. Vacquié, D. V. Gravelle, and M. I. Boulos, J. Phys. D 25, 425-429 (1992).

    Google Scholar 

  12. M. Cao, F. Gitzhofer, D. V. Gravelle, and M. I. Boulos, Plasma Sources Sci. Technol. 6, 39-45 (1997).

    Google Scholar 

  13. M. Rajabian, S. Vacquié, and D. V. Gravelle, Proc. XXIV Int. Conf. on Phenomena Ionized Gases (ISPIG), Poland, 1999.

  14. H. J. Kim and S. H. Hong, IEEE Trans. Plasma Sci. 23(5), 852-859 (1995).

    Google Scholar 

  15. M. Rajabian, D. V. Gravelle, and S. Vacquié, Plasma Chem. Plasma Process. 24, 2(2003)—preceding paper.

    Google Scholar 

  16. M. C. N. Van de Sanden, R. Van der Bercken, and D. C. Schram, Plasma Sources Sci. Technol. 3, 511(1994).

    Google Scholar 

  17. M. C. M. Van de Sanden, The Expanding Plasma Jet: Experimental and Model, PhD Thesis, Eindhoven University of Technology, Netherland, 1991.

    Google Scholar 

  18. R. F. G. Meulenbroeks, R. A. H. Engelin, M. N. A. Beurskens, R. M. J. Paffen, M. C. N. Van de Sanden, J. A. M. Van der Mullen, and D. C. Schram, Plasma Sources Sci. Technol. 4, 1(1995).

    Google Scholar 

  19. L. Robin, P. Vervisch, and B. G. Cheron, Phys. Plasmas 1, 2(1994).

    Google Scholar 

  20. H. J. Gordon and C. H. Kruger, Plasma Chem. Plasma Process. 13, 3(1993).

    Google Scholar 

  21. H. Akatsuka and M. Suzuki, Plasma Sources Sci. Technol. 4(125), 36(1995).

    Google Scholar 

  22. B. Van Ootegem, L. Leborgne, and P. Vervisch, Proc. 3rd European Symp. on Aerothermodynamics for Space Vehicles, 1998.

  23. K. Kano, M. Suzuki, and H. Akatsuka, Contrib. Plasma Phys. 41(1), 91(2001).

    Google Scholar 

  24. V. Sember, D. V. Gravelle, and M. I. Boulos, J. Phys. D 35, 1350-1361 (2002).

    Google Scholar 

  25. P. Freton, J. J. Gonzalez, A. Gleizes, F. Camy Peyreet, G. Gaillibotte, and M. Delzenne, J. Phys. D 35, 115(2002).

    Google Scholar 

  26. G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 1, Spectra of Diatomic Molecules, Van Nostrand, Princeton, NJ, 1950.

  27. J. F. Coudert, Contribution à la modélization de la cinétique chimique dans un plasma N2-O2 produit par un générateur à arc soufflé, étude experimentale de la répartition des températures dans l'écoulement plasma soumis à l'injection de gaz froids, Thèse Doctorat ès Sciences, Univesite Limoges, Limoges, France, 1985.

  28. M. Rahmane, G. Soucy, and M. I. Boulos, Rev. Sci. Instrum. 66(6), 3424-3431 (1995).

    Google Scholar 

  29. A. H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid Flow, 1 and 2, Ronald Press, New York (1953–1954).

    Google Scholar 

  30. M. Rajabian, S. Vacquié, and D. V. Gravelle, IEEE Conf. on Plasma Science, CA, 1999.

  31. W. D. Swank, J. R. Fincke, and D. C. Haggard, Rev. Sci. Instrum. 64(1), 56-62 (1993).

    Google Scholar 

  32. J. R. Fincke, S. C. Snyder, and W. D. Swank, Rev. Sci. Instrum. 64(3), 711-718 (1993).

    Google Scholar 

  33. Z. Szymanski, Z. Peradzynski, J. Kurzyna, J. Hoffman, M. Dudeck, M. de Graaf, and J. V. Lago, J. Phys. D 30, 998-1006 (1997).

    Google Scholar 

  34. H. Tahara, K. Komiko, T. Younezawa, Y. Andoh, and T. Yoshikawa, IEEE Trans. Plasma Sci. 24(1), 218-225 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajabian, M., Gravelle, D.V. & Vacquié, S. Measurements of Temperature and Electron Number Density in a dc Argon–Nitrogen Plasma Torch—Supersonic Operation. Plasma Chemistry and Plasma Processing 24, 285–305 (2004). https://doi.org/10.1023/B:PCPP.0000013202.11584.00

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PCPP.0000013202.11584.00

Navigation