Skip to main content
Log in

Parameters of a Longitudinal DC Discharge in a Supersonic Air Flow

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

This work is devoted to the study of the properties of a discharge in a supersonic air flow and the problem of determining the temperature of a contracted (thin cylindrical) plasma channel with a radial temperature distribution. The paper considers a direct discharge 30 mm long far from the channel walls in the core of a supersonic flow with the following parameters: Mach number M = 2, flow rate V ~ 500 m/s, stagnation temperature T0 = 300 K, and static gas pressure Pst = 22 kPa. The axisymmetric geometry of the ex-periments with two coaxial electrodes located parallel to the flow was chosen to avoid the appearance of a part of the current channel perpendicular to the flow and the corresponding discharge pulsations. The current–voltage characteristic was obtained, and the dependences of the temperature of the electric discharge plasma on the electrical parameters of the discharge were obtained using emission spectroscopy. Also, with the help of shadow visualization and high-speed shooting, an estimate was obtained of the thickness of the thermal cone and the discharge channel and their dependence on the discharge current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. V. I. Alferov and A. S. Bushmin, Sov. Phys.–JETP 17, 1190 (1963).

    Google Scholar 

  2. D. Caruana, Plasma Phys. Controlled Fusion 52, 124045 (2010). https://doi.org/10.1088/0741-3335/52/12/124045

  3. J. Poggie, T. McLaughlin, and S. Leonov, AerospaceLab J., No. 10, AL10-01 (2015). https://doi.org/10.12762/2015.AL10-01

  4. S. B. Leonov, Energies 11, 1733 (2018). https://doi.org/10.3390/en11071733

    Article  Google Scholar 

  5. A. A. Yatskih, A. N. Semenov, Yu. G. Yermolaev, A. D. Kosinov, and N. V. Semionov, Sib. Fiz. Zh. 12 (3), 41 (2017). https://doi.org/10.25205/2541-9447-2017-12-3-41-48

    Article  Google Scholar 

  6. F. Falempin, A. A. Firsov, D. A. Yarantsev, M. A. Goldfeld, K. Timofeev, and S. B. Leonov, Exp. Fluids 56, 54 (2015). https://doi.org/10.1007/s00348-015-1928-4

    Article  Google Scholar 

  7. A. Ferrero, Aerospace 7, 32 (2020). https://doi.org/10.3390/aerospace7030032

    Article  Google Scholar 

  8. P. Andrews, P. Lax, and S. Leonov, Energies 15, 7104 (2022). https://doi.org/10.3390/en15197104

    Article  Google Scholar 

  9. X. Ma, J. Fan, Y. Wu, X. Liu, and R. Xue, Phys. Fluids 34, 086102 (2022). https://doi.org/10.1063/5.0095487

  10. M. Tang, Y. Wu, and H. Wang, Acta Astronaut. 198, 577 (2022). https://doi.org/10.1016/j.actaastro.2022.07.010

    Article  ADS  Google Scholar 

  11. Y. Watanabe, S. Elliott, A. Firsov, A. Houpt, and S. Leonov, J. Phys. D: Appl. Phys. 52, 444003 (2019). https://doi.org/10.1088/1361-6463/ab352f

  12. W. Hongyu, X. Feng, L. Jie, Y. Cheng, and Y. Yanguang, Acta Astronaut. 187, 325 (2021). https://doi.org/10.1016/j.actaastro.2021.06.049

  13. G. Gong, Y. Li, Y. Wang, and P. Kuang, AIP Adv. 10, 055212 (2020). https://doi.org/10.1063/1.5145235

  14. A. P. Ershov, S. A. Kamenshchikov, E. B. Kolesnikov, A. A. Logunov, A. A. Firsov, and V. A. Chernikov, Fluid Dyn. 43, 605 (2008). https://doi.org/10.1134/S0015462808040133

    Article  ADS  Google Scholar 

  15. R. Feng, M. Sun, H. Wang, Y. Huang, Y. Tian, C. Wang, X. Liu, J. Zhu, and Z. Wang, Aerosp. Sci. Technol. 121, 107381 (2022). https://doi.org/10.1016/j.ast.2022.107381

  16. S. B. Leonov, S. Elliott, C. Carter, A. Houpt, P. Lax, and T. Ombrello, Exp. Therm. Fluid Sci. 124, 110355 (2021). https://doi.org/10.1016/j.expthermflusci.2021.110355

  17. A. A. Firsov and N. S. Kolosov, J. Phys.: Conf. Ser. 2100, 012017 (2021). https://doi.org/10.1088/1742-6596/2100/1/012017

  18. S. B. Leonov, K. V. Savelkin, A. A. Firsov, and D. A. Yarantsev, High Temp. 48, 896 (2010). https://doi.org/10.1134/S0018151X10060179

    Article  Google Scholar 

  19. A. P. Ershov, O. S. Surkont, I. B. Timofeev, V. M. Shibkov, and V. A. Chernikov, High Temp. 42, 667 (2004). https://doi.org/10.1023/B:HITE.0000046519.53287.47

    Article  Google Scholar 

  20. A. P. Ershov, A. v. Kalinin, O. S. Surkont, I. B. Timofeev, V. M. Shibkov, and V. A. Chernikov, High Temp. 42, 865 (2004). https://doi.org/10.1007/S10740-005-0029-0

    Article  Google Scholar 

  21. S. B. Leonov and D. A. Yarantsev, Fluid Dyn. 43, 945 (2008). https://doi.org/10.1134/S001546280806015X

    Article  ADS  Google Scholar 

  22. V. M. Shibkov, L. V. Shibkova, and A. A. Logunov, Plasma Phys. Rep. 43, 373 (2017). https://doi.org/10.1134/S1063780X17030114

    Article  ADS  Google Scholar 

  23. V. M. Shibkov, L. V. Shibkova, and A. A. Logunov, Plasma Phys. Rep. 44, 754 (2018). https://doi.org/10.1134/S1063780X18080056

    Article  ADS  Google Scholar 

  24. E. E. Perevoshchikov and A. A. Firsov, Plasma Phys. Rep. 49, 634 (2023). https://doi.org/10.1134/S1063780X22601894

  25. V. A. Bityurin, A. N. Bocharov, A. S. Dobrovolskaya, N. A. Popov, and A. A. Firsov, Plasma Phys. Rep. 49, 575 (2023). https://doi.org/10.1134/S1063780X22601869

  26. V. L. Bychkov, L. P. Grachev, I. I. Esakov, A. A. Ravaev, and K. V. Khodataev, Tech. Phys. 49, 833 (2004). https://doi.org/10.1134/1.1778855

    Article  Google Scholar 

  27. A. Firsov, V. Bityurin, D. Tarasov, A. Dobrovolskaya, R. Troshkin, and A. Bocharov, Energies 15, 7015 (2022). https://doi.org/10.3390/en15197015

    Article  Google Scholar 

  28. A. A. Aksenov, Computer Research and Modeling, vol. 9, no. 1 (2017). https://doi.org/10.20537/2076-7633-2017-9-5-20

  29. V. A. Bityurin and A. N. Bocharov, Fluid Dyn. 41, 843 (2006). https://doi.org/10.1007/S10697-006-0100-5

    Article  ADS  Google Scholar 

  30. V. A. Bityurin, A. N. Bocharov, and N. A. Popov, Fluid Dyn. 43, 642 (2008). https://doi.org/10.1134/S0015462808040170

    Article  ADS  Google Scholar 

  31. V. A. Bityurin, A. N. Bocharov, and N. A. Popov, J. Phys. D: Appl. Phys. 52, 354001 (2019). https://doi.org/10.1088/1361-6463/ab2181

  32. V. M. Shibkov, K. N. Kornev, A. A. Logunov, and Yu. K. Nesterenko, Plasma Phys. Rep. 48, 798 (2022). https://doi.org/10.1134/S1063780X22700246

    Article  ADS  Google Scholar 

  33. E. N. Pusateri, H. E. Morris, E. M. Nelson, and W. Ji, J. Geophys. Res.: Atmos. 120, 7300 (2015). https://doi.org/10.1002/2015JD023100

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank lead engineer K.V. Savelkin for his help in the preparation and performing of the experiments.

Funding

This work was supported by the Russian Science Foundation, grant no. 21-79-10408.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Firsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troshkin, R.S., Firsov, A.A. Parameters of a Longitudinal DC Discharge in a Supersonic Air Flow. Plasma Phys. Rep. 49, 640–648 (2023). https://doi.org/10.1134/S1063780X22601870

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22601870

Keywords:

Navigation