Skip to main content
Log in

Transformation of the monocot Alstroemeria by Agrobacterium rhizogenes

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

An efficient procedure is described for transformation of calli of the monocotyledonous plant Alstroemeria by Agrobacterium rhizogenes. Calli were co-cultivated with A. rhizogenes strain A13 that harbored both a wild-type Ri-plasmid and the binary vector plasmid pIG121Hm, which included a gene for neomycin phosphotransferase II (NPTII) under the control of the nopaline synthase (NOS) promoter, a gene for hygromycin phosphotransferase (HPT) under the control of the cauliflower mosaic virus (CaMV) 35S promoter, and a gene for β-glucuronidase (GUS) with an intron fused to the CaMV 35S promoter. Inoculated calli were plated on medium that contained cefotaxime to eliminate bacteria. Four weeks later, transformed cells were selected on medium that contained 20 mg L–1 hygromycin. A histochemical assay for GUS activity revealed that selection by hygromycin was complete after eight weeks. The integration of the T-DNA of the Ri-plasmid and pIG121Hm into the plant genome was confirmed by PCR. Plants derived from transformed calli were produced on half-strength MS medium supplemented with 0.1 mg L–1 GA3 after about 5 months of culture. The presence of the gusA, nptII, and rol genes in the genomic DNA of regenerated plants was detected by PCR and Southern hybridization, and the expression of these transgenes was verified by RT-PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akutsu M. and Sato H. 2002. Induction of proembryos in liquid culture increases the efficiency of plant regeneration from Alstroemeria calli. Plant Sci. 163: 475–479.

    Google Scholar 

  • Aldemita R. R. and Hodges T. K. 1996. Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta. 199: 612–617.

    Google Scholar 

  • Assad F. F., Tucker K. L. and Singer E. R. 1993. Epigenetic repeat-induced gene silencing (RIGS( in Arabidopsis. Plant Mol. Biol. 22: 1067–1085.

    Google Scholar 

  • Belarmino M. M. and Mii M. 2000. Agrobacterium-mediated genetic transformation of a Phalaenopsis. Plant Cell. Rep. 19: 435–442.

    Google Scholar 

  • Birnboim B. C. and Doly J. 1979. A rapid alkaline extraction pro-cedure for screening recombinant plasmid DNA. Nucleic. Acids. Res. 7(6): 1513–1523.

    Google Scholar 

  • Buitendijk J. H., Pinsonneaux N., van Donk A. C., Ramanna M. S. and van Lammeren A. A. M. 1995. Embryo rescue by half-ovule culture for the production of interspecific hybrids in Alstroeme-ria. Sci. Hort. 64: 65–75.

    Google Scholar 

  • Chilton M. D., Tepfer D. A., Petit A., David C., Casse-Delbart F. and Tempé J. 1982. Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295: 432–434.

    Google Scholar 

  • Christou P. 1995. Strategies for variety-independent genetic trans-formation of important cereals, legumes and woody species uti-lizing particle bombardment. Euphytica 85: 13–27.

    Google Scholar 

  • Daimon H., Fukami M. and Mii M. 1990. Hairy root formation in peanut by the wild-type strains of Agrobacterium rhizogenes. Plant Tiss. Cult. Lett. 7(1): 31–34.

    Google Scholar 

  • De Jeu M. J. and Jacobsen E. 1995. Early postfertilization ovule culture in Alstroemeria L. and barriers to interspecific hybridization. Euphytica 86: 15–23.

    Google Scholar 

  • Dellaporta S. L., Wood J., Hicks J. B. 1983. A Plant Miniprepara-tion: Version II. Plant Mol. Biol. Rep. 1(4): 19–21.

    Google Scholar 

  • Eady C. C., Weld R. J. and Lister C. E. 2000. Agrobacterium tume-faciens-mediated transformation and transgenic plant regenera-tion of onion (Allium cepa L.). Plant Cell. Rep. 19: 376–381.

    Google Scholar 

  • Ermayanti T. M., McComb J. A. and O'Brien P. A. 1994. Stimula-tion of synthesis and release of swainsonine from transformed roots of Swainsona galegifolia. Phytochemistry 36: 313–317.

    Google Scholar 

  • Gonzalez-Benito E. and Alderson P. G. 1990. Regeneration from Alstroemeria callus. Acta Hort 280: 135–138.

    Google Scholar 

  • Hamill J. D., Rounsley S., Spencer A., Todd G., Rhodes M. J. C. 1991. The use of the polymerase chain reaction in plant trans-formation studies. Plant Cell. Rep. 10: 221–224.

    Google Scholar 

  • Herrera-Estrella L. and Simpson J. 1988. Foreign gene expression in plants. In: Shoaw C. H. (ed.), Plant Molecular Biology, A Practical Approach. IRL Press, Washington DC, USA.

    Google Scholar 

  • Hiei Y., Ohta S., Komari T. and Kumashiro T. 1994. Efficient transformation of rice (Oryza sativa L. ( mediated by Agrobacte-rium and sequence analysis of boundaries of the DNA. Plant J. 6(2): 271–282.

    Google Scholar 

  • Hobbs S. L. A., Warkentin T. D. and Delong C. M. O. 1993. Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol. Biol. 21: 17–26.

    Google Scholar 

  • Ishikawa T., Takayama T., Ishizaka H., Ishikawa K. and Mii M. 1997. Production of interspecific hybrids between Alstroemeria ligtu L. hybrid and A. pelegrina L. var. rosea by ovule culture. Breed Sci. 47: 15–20.

    Google Scholar 

  • Jähne A., Becker D. and Lörz H. 1995. Genetic engineering of ce-real crop plants: a review. Euphytica 85: 35–44.

    Google Scholar 

  • Jefferson R. A., Kavanagh T. A. and Bevan M. W. 1987. GUS fusions: (-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.

    Google Scholar 

  • Kiyokawa S., Kikuchi Y., Kamada H. and Harada H. 1992. Detec-tion of rol genes of Ri plasmids by PCR method and its appli-cation to confirmation of transformation. Plant Tiss. Cult. Lett. 9: 94–98.

    Google Scholar 

  • Lin H.-S., De Jeu M. J. and Jacobson E. 1998. Formation of shoots from leaf axils of Alstroemeria: the effect of the position on the stem. Plant Cell. Tiss. Organ. Cult. 52: 165–169.

    Google Scholar 

  • Lin H.-S., van der Toorn C., Raemakers K. J. J. M., Visser R. G. F., Marjo J., De Jeu M. J. and Jacobson E. 2000. Genetic transfor-mation of Alstroemeria using particle bombardment. Mol. Breed. 6: 369–377.

    Google Scholar 

  • Mano Y., Nabeshima S., Matsui C. and Ohkawa H. 1986. Produc-tion of tropane alkaloids by hairy root cultures of Scopolia japonica. Agric. Biol. Chem. 50: 2715–2722.

    Google Scholar 

  • Maurel C., Leblanc N., Barbier-Brygoo H., Perrot-Rechenmann C., Bouvier-Durand M. and Guern J. 1994. Alterations of auxin per-ception in rolB-transformed tobacco protoplasts. Plant. Physiol. 105: 1209–1215.

    Google Scholar 

  • Moritz T. and Schmülling T. 1998. The gibberellin content of rolA transgenic tobacco plants is specifically altered. J. Plant Physiol. 153: 774–776.

    Google Scholar 

  • Murashige T. and Skoog F. 1962. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plant 15: 473–497.

    Google Scholar 

  • Nilsson O., Moritz T., Imbault N., Sandberg G. and Olsson O. 1993. Hormonal characterization of transgenic tobacco plants expressing the rolC gene of Agrobacterium rhizogenes TL-DNA. Plant Physiol. 102: 363–371.

    Google Scholar 

  • Ohta S., Mita S., Hattori T. and Nakamura K. 1990. Construction and expression in tobacco of a (-glucuronidase (GUS( reporter gene containing an intron within the coding sequence. Plant Cell Physiol. 31(6): 805–813.

    Google Scholar 

  • Sawada H., Ieki H. and Matsuda I. 1995. PCR detection of Ti and Ri plasmids from phytopathogenic Agrobacterium strains. Appl. Env. Microbiol. 61(2): 828–831.

    Google Scholar 

  • Shen W. H., Petit A., Guern J. and Tempé J. 1988. Hairy roots are more sensitive to auxin than normal roots. Proc. Natl. Acad. Sci. USA 85: 3417–3421.

    Google Scholar 

  • Sim S. J., Kim D. J. and Chang H. N. 1994. Shikonin production by extractive cultivation in transformed-suspension and hairy root cultures of Lithospermum erythrorhizon. Ann. N. Y. Acad. Sci. 745: 442–454.

    Google Scholar 

  • Smith R. H. and Hood E. E. 1995. Agrobacterium tumefaciens-me-diated transformation of a monocotyledon. Crop. Sci. 35: 301–309.

    Google Scholar 

  • Simpson R. B., Spielmann A., Margossian L. and McKnight T. D. 1986. A disarmed binary vector from Agrobacterium tumefaciens functions in Agrobacterium rhizogenes. Plant Mol. Biol. 6: 403–415.

    Google Scholar 

  • Tepfer D. 1984. Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the trans-formed genotype and phenotype. Cell. 37: 959–967.

    Google Scholar 

  • Watad A. A., Yun D.-J., Matsumoto T., Niu X., Wu Y., Kononowicz A. K., Bressan R. A., Hasegawa P. M. 1998. Microprojectile bom-bardment-mediated transformation of Lilium longiflorum. Plant Cell. Rep. 17: 262–267.

    Google Scholar 

  • Wilmink A., van de Ven B. C. E., Dons J. J. M. 1992. Expression of the GUS-gene in the monocot tulip after introduction by particle bombardment and Agrobacterium. Plant Cell. Rep. 11: 76–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masako Akutsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akutsu, M., Ishizaki, T. & Sato, H. Transformation of the monocot Alstroemeria by Agrobacterium rhizogenes . Molecular Breeding 13, 69–78 (2004). https://doi.org/10.1023/B:MOLB.0000012860.29731.9c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MOLB.0000012860.29731.9c

Navigation