Skip to main content
Log in

Tetrazole synthesis via the palladium-catalyzed three component coupling reaction

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The synthesis of tetrazoles was achieved via the palladium-catalyzed three component coupling (TCC) reaction; The TCC reaction of malononitrile derivatives, allyl acetate and trimethylsilyl azide proceeds very smoothly under a catalytic amount of Pd(PPh3)4 to give 2-allyltetrazoles, and further the TCC reaction of various activated cyano compounds, allyl methyl carbonate and trimethylsilyl azide proceeds readily under a catalytic amount of Pd2(dba)3 ≥ CHCl3 and (2-furyl)3P to give 2-allyltetrazoles. π-Allylpalladium azide complex is proposed as a key intermediate in the catalytic cycle and the [3 + 2] cycloaddition between the π-allylpalladium azide complex and cyano compounds most probably gives the tetrazole frameworks. The deallylation of the derived allyltetrazoles was attained via the two-step procedure; the ruthenium-catalyzed isomerization and ozonolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For reviews on the chemistry of tetrazoles, see: Meier, H. R. and Heimgartner, H. in Methoden der Organischen Chemie (Houben-Weyl); Schumann, E. (ed.), Georg Thieme Verlag: Stuttgart, 1994; Vol. E8d, p. 664-795.

    Google Scholar 

  2. Butler, R. N. in Comprehensive Heterocyclic Chemistry, Katritzky, A. R. and Rees, C. W. (eds), Pergamon: Oxford, 1984, Vol. 5, p. 791-838.

    Google Scholar 

  3. Zachary, P. D. and Sharpless, K. B., A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: Synthesis of 5-sulfonyl tetrazoles from azides and sulfonyl cyanides, Angew. Chem., Int. Ed., 41 (2002) 2110-2113.

    Article  Google Scholar 

  4. Zachary, P. D. and Sharpless, K. B., A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: Synthesis of 5-acyltetrazoles form azides and acyl cyanides, Angew. Chem., Int. Ed., 41 (2002) 2113-2116.

    Article  Google Scholar 

  5. Demko, Z. P. and Sharpless, K. B., Preparation of 5-substituted 1H-tetrazoles form nitriles in water, J. Org. Chem., 66 (2001) 7945-7950.

    Article  CAS  Google Scholar 

  6. Demko, Z. P. and Sharpless, K., An intramolecular [2 + 3] cycloaddition route to fused 5-heterosubstituted tetrazoles, Org. Lett., 3 (2001) 4091-4094.

    Article  CAS  Google Scholar 

  7. Alterman, M. and Hallberg, A., Fast microwave-assisted preparation of aryl and vinyl nitriles and the corresponding tetrazoles from organohalides, J. Org. Chem., 65 (2000) 7984-7989.

    Article  CAS  Google Scholar 

  8. Batey, R. A. and Powell, D. A., A general synthetic method for the formation of substituted 5-aminotetrazoles form thioureas: A Strategy for diversity amplification, Org. Lett., 2 (2000) 3237-3240.

    Article  CAS  Google Scholar 

  9. Singh, H., Chawla, A. S., Kapoor, V. K., Paul, D. and Malhotra, R. K., Medicinal chemistry of tetrazoles, Prog. Med. Chem., 17 (1980) 151-183.

    Article  CAS  Google Scholar 

  10. Ashron, W. T., Cantone, C. L., Chang, L. L., Hutchins, S. M., Strelitz, R. A., MacCoss, M., Chang, R. S. L., Lotti, V. J., Faust, K. A., Chen, T.-B., Bunting, P., Schorn. T. W., Kivlighn, S. D. and Siegl, S., Nonepeptide angiotensin II antagonists derived from 4H-1,2,4-triazoles and 3H-imidazo[1,2-b][1,2,4]triazoles, J. Med. Chem., 36 (1993) 591-609.

    Article  Google Scholar 

  11. Bovy, P. R., Reitz, D. B., Collins, J. T., Chamberlain, T. S., Olins, G. M., Corpus, V. M., McMahon, E. G., Palomo, M. A., Koepke, J. P., Smits, G. J., McGraw, D. E. and Gaw, J. F., Nonpeptide angiotensin II antagonists: N-phenyl-1H-pyrrole derivatives are angiotensin II receptor antagonists, J. Med. Chem., 36 (1993) 101-110.

    Article  CAS  Google Scholar 

  12. Marshall, W. S., Goodson, T., Cullinan, G. J., Swanson-Bean, D., Haisch, K. D., Rinkema, L. E. and Fleisch, J. H., Leukotriene receptor antagonists. 1. Synthesis and structureactivity relationships of alkoxyacetophenone derivatives, J. Med. Chem., 30 (1987) 682-689.

    Article  CAS  Google Scholar 

  13. Bock, H., Dammel, R., Fisher, S. and Wentrup, C., Nitrile imines RC = N +-N --Si(CH3)3: Optimization of gas phase synthesis and assignment of their photoelectron spectra, Tetrahedron Lett., 28 (1987) 617-620.

    Article  CAS  Google Scholar 

  14. Wentrup, C., Fisher, S., Maquestiau, A. and Flammang, R., Nitrile imines: Thermal generation, direct observation, and subsequent trapping, Angew. Chem., Int. Ed. Engl., 24 (1985) 56-57.

    Article  Google Scholar 

  15. Wentrup, C. and Becker, J., Synthesis of 1-azaazulene and benz[a]azulene by carbene rearrangement, J.Am.Chem. Soc., 106 (1984) 3705-3706.

    Article  CAS  Google Scholar 

  16. Nelson, J. H., Schmitt, D. L., Henry, R. A., Moore, D. W. and Jonassen, H. B., Platinum-and palladium-tetrazole complexes, Inorg. Chem., 9 (1970) 2678-2681.

    Article  Google Scholar 

  17. Mihima, J. S. and, Herbst, R. M., The reaction of nitriles with hydrazoic acid: Synthesis of monosubstituted tetrazoles, J. Org. Chem., 15 (1950) 1082-1092.

    Article  Google Scholar 

  18. Henry, R. A. and Finnegan, W. G., Regiospecific coordination of ambidentate tetrazoles to cobalt oximes, J. Am. Chem. Soc., 76 (1954) 926-928.

    Article  CAS  Google Scholar 

  19. Markgraf, J. H., Bachmann, W. T. and Hollis, D. P., Proton magnetic resonance spectra of certain methlytetrazoles, J. Org. Chem., 30 (1965) 3472-3474.

    CAS  Google Scholar 

  20. Isida, T., Akiyama, T., Nabika, K., Sisaido, K. and Kozima, S., The formation of tin-nitrogen bonds. V. The selective 1-substitution reaction of tetrazoles by the reaction of 5-substituted 2-(tri-n-butylstannyl)tetrazoles with methyl iodide, methyl p-toluenesulfonate, dimethyl sulfate, and ethyl bromoacetate, Bull. Chem. Soc. Jpn., 46 (1973) 2176-2180.

    Article  CAS  Google Scholar 

  21. Takach, N. E., Holt, E. M., Alcock, N. W., Henry, R. A. and Nelson, J. H., Transition metal arene chemistry. 4. Structural studies of cobalt group complexes, J. Am. Chem. Soc., 102 (1980) 2968-2979.

    Article  CAS  Google Scholar 

  22. Ito, S., Tanaka, Y., Kakehi, A. and Kondo, K., A facile synthesis of 2,5-disubstituted tetrazoles by the reaction of phenylsulfonylhydrazones with arenediazonium salts, Bull. Chem. Soc. Jpn., 49 (1976) 1920-1923. Also, see

    Article  CAS  Google Scholar 

  23. In reference 1a, p 736-748.

  24. In reference 1b, p 817-819.

  25. Gyoung, Y. S., Shim, J.-G. and Yamamoto, Y., Rgiospecific synthesis of 2-allylated-5-substituted tetrazoles via palladiumcatalyzed reaction of nitriles, trimethylsilyl azide, and allyl acetates, Tetrahedron Lett., 41 (2000) 4193-4196.

    Article  CAS  Google Scholar 

  26. Kamijo, S., Jin, T. and Yamamoto, Y., Palladium-catalyzed selective synthesis of 2-allyltetrazoles, J. Org. Chem., 67 (2002) 7413-7417.

    Article  CAS  Google Scholar 

  27. For the synthesis of N-cyanoindoles via the palladiumcatalyzed three component coupling reaction, see: Kamijo, S. and Yamamoto, Y., Synthesis of allyl cycamides and Ncyanoindoles via the palladium-catalyzed three-component coupling reaction, J. Am. Chem. Soc., 124 (2002) 11940-11945.

    Article  CAS  Google Scholar 

  28. Dmitrienko, G. I., Nielsen, K. E., Steingart, C., Ming, N. S., Willson, J. M. and Weeratunga, G., N-Cyanoindoles and N-cyanoindole-4,7-diones: Construction of a BC ring synthon for the Kinamycins, Tetrahedron Lett., 31 (1990) 3681-3684.

    Article  CAS  Google Scholar 

  29. Echavarren, A. M., Tamayo, N., Frutos, Ó. d. and García, A., Synthesis of benzo[b]carbazoloquinones by coupling of organostannanes with bromoquinones, Tetrahedron, 53 (1997) 16835-16846.

    Article  CAS  Google Scholar 

  30. Takeda, Y., Nishiyama, H., Ishikura, M., Kamata, K. and Terashima, M., 1-(2-Oxazolinyl)indoles, Heterocycles, 33 (1992) 173-177.

    Article  CAS  Google Scholar 

  31. Busetto, L. and Palazzi, A., Preparation and reactivity of some new azido-bridged complexes of Pd(II) and Pt(II), Inorg. Chim. Acta, 13 (1975) 233-238.

    Article  CAS  Google Scholar 

  32. Shaw, B. L. and Shaw, G., Transition metal-cabon bonds. Part XXV. Allylic palladium complexes containing cyanides or azide ligands, J. Chem. Soc. (A), (1971) 3533-3535.

  33. Kamijo, S., Jin, T. and Yamamoto, Y., Novel synthetic route to allyl cyanamides: Palladium-catalyzed coupling of isocyanides, allyl carbonate, and trimethylsilyl azide, J. Am. Chem. Soc., 123 (2001) 9453-9454.

    Article  CAS  Google Scholar 

  34. Kamijo, S., Jin, T., Huo, Z. and Yamamoto, Y., Regiospecific synthesis of 2-allyl-1,2,3-triazoles by palladiumcatalyzed 1,3-dipolar cycloaddition, Tetrahedron Lett., 43 (2002) 9707-9710.

    Article  CAS  Google Scholar 

  35. Tatsuno, Y., Yoshida, T. and Otsuka, S., 3-Allyl)palladium(II) complexes, Inorg. Synth., 19 (1979) 221-223.

    Google Scholar 

  36. 14. For reviews on the protecting groups, see: (a)_ Greene, T. W. and Wuts, P. G. M. Protective Groups in Organic Synthesis; Wiley: New York; 1999.

    Google Scholar 

  37. Kocie?ski, P. J. Protecting Groups, Thieme, Stuttgart, 2000.

    Google Scholar 

  38. Robertson, J. Protecting group Chemistry, Oxford University, Oxford, 2000.

    Google Scholar 

  39. Hanson, J. R., Protecting Groups in Organic Synthesis, Sheffield Academic, Sheffield, 1999.

    Google Scholar 

  40. Jarowicki, K. and Kocienski, P., Ptotecting groups, J. Chem. Soc., Perkin Trans., 1 (2001) 2109-2135.

    Article  CAS  Google Scholar 

  41. Jarowicki, K. and Kocienski, P., Ptotecting groups, J. Chem. Soc., Perkin Trans., 1 (2000) 2495-2527.

    Article  Google Scholar 

  42. Jarowicki, K. and Kocie?ski, P., Ptotecting groups, J. Chem. Soc., Perkin Trans., 1 (1999), 1589-1615.

    Article  Google Scholar 

  43. Protecting group for nitrogen containing heteroaromatics, see: (a) Theodoridis, G., Novel applications of alkyl fluorides in organic synthesis: Versatile nitrogen protecting groups, Tetrahedron Lett., 39 (1998) 9365-6368.

  44. Hartley, D. J. and Iddon, B., Use of the vinyl group as an efficient protecting group for azole N-atoms: Synthesis of polyfunctionalized imidazoles and thieno[2,3-d]?[3,2-d]imidazole, Tetrahedron Lett., 38 (1997) 4647-4650.

    Article  CAS  Google Scholar 

  45. Montgomery, J. A. and Thomas, H. J., The use of allyl group as a blocking group for the synthesis of Nsubstituted purines, J. Org. Chem., 30 (1965) 3235-3236.

    CAS  Google Scholar 

  46. Kimbonguila, A. M., Boucida, S., Guibé, F. and Loffet, A., On the allyl protection of the imidazole ring of histidine, Tetrahedron, 53 (1997) 12525-12538.

    Article  CAS  Google Scholar 

  47. Isomerization of allylamines by using a transition metal catalyst, see: (a)_ Stille, J. K. and Becker, Y., Isomerization of N-allylamides and-imides to aliphatic enamides by rhodium, and ruthenium complexes, J. Org. Chem., 45 (1980) 2139-2145. [Ru, Fe]

    Article  CAS  Google Scholar 

  48. Tani, K., Yamagata, T., Akutagawa, S., Kumobayashi, H., Taketomi, T., Yakaya, H., Miyashita, A., Noyori, R. and Otsuka, S., Highly enantioselective isomerization of prochiral allylamines catalyzed by chiral diphosphine rhodium(I) complexes. Preparation of optically active enamines, J. Am. Chem. Soc., 106 (1984) 5208-5217. [Rh]

    Article  CAS  Google Scholar 

  49. Tani, K., Asymmetric isomerization of allylic compounds and the mechanism, Pure. Appl. Chem., 57 (1985) 1845-1854. [Rh]

    CAS  Google Scholar 

  50. Sonesson, C. and Hallberg, A., Preparation of Nformyl-and N-carbomethoxy-2,3-dihydropyrroles by palladium-catalyzed isomerization of the corresponding N-acyl-2,5-dihydropyrrole, Tetrahedron Lett., 36 (1995) 4505-4506. [Pd]

    Article  CAS  Google Scholar 

  51. Stepwise cleavage of allylamines, see: (a)_ Lessen, T. A., Demko, D.M. and Weinreb, S. M., Synthesis of an advanced quinocarcin intermediate from L-glutamic acid, Tetrahedron Lett., 31 (1990) 2105-2108.

    Article  CAS  Google Scholar 

  52. Georg, G. I., Kant, J., He, P., Ly, A. M. and Lampe, L., 2-Aza-1,3-dienes as novel precursors for the synthesis of N-unsabstituted ?-lactams. A three step synthesis of 4-acetoxy-3-phenoxy-2-azetidinone, Tetrahedron Lett., 29 (1988) 2409-2412.

    Article  CAS  Google Scholar 

  53. Bose, A. K., Manhas, M. S., Vincent, J. E., Gala, K. and Fernandez, I. F., N-Unsabstituted-lactams from ?-hydroxy-?-amino acids. Facile preparation of intermediates for Isocephalosporins, J. Org. Chem., 47 (1982) 4075-4081.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamijo, S., Jin, T., Huo, Z. et al. Tetrazole synthesis via the palladium-catalyzed three component coupling reaction. Mol Divers 6, 181–192 (2003). https://doi.org/10.1023/B:MODI.0000006755.04495.d3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MODI.0000006755.04495.d3

Navigation