Skip to main content
Log in

Thermal techniques to study complex elastomer/filler systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The transfer of heat through an elastomeric matrix is important for both the processing of the material and its subsequent lifetime. Thermal conductivity can be used to evaluate the influence of different polymers and fillers on heat transfer. Additionally, the dispersion of the filler has an effect on heat transfer and thermal conductivity measurements can be used to provide semi-quantitative estimations of filler dispersion. The degradation of sulfur-crosslinked elastomer systems has been studied for many years. The degradation of the crosslinks (changes in sulfur rank) and degradation of the polymer backbone by thermal and/or oxidative processes have been studied extensively using many techniques including thermal analysis (references). However, the degradation of the crosslinked-polymer 'network' is less well understood. The relationship of the crosslink network to this degradation process is a key to both the long term and higher temperature performance of the sulfur-crosslinked elastomer. The changes in physical properties observed upon exposure of sulfur-crosslinked elastomers can be monitored using dynamic mechanical analysis. Subsequently, other thermal techniques can be used to monitor the chemistry that is occurring during these degradations. Thermal desorption/mass spectroscopy and dynamic scanning calorimetry are used to complete the picture of the degradation processes taking place. Examples of these techniques will be provided to illustrate the utility of the analytical approach, the chemistry involved in these degradation processes and the effect of changes in the polymer, cure package and other ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Berg, B. Stenberg and R. Sanden, Plast. Rubb. Proc. Appl., 12 (1989) 235.

    CAS  Google Scholar 

  2. D. J. Burlett, Rubb. Chem. Tech., 72 (1999) 165.

    CAS  Google Scholar 

  3. J.-F. Chailan, G. Boiteaux, J. Chauchard, B. Pinel and G. Seytre, Polym. Degrad. Stab., 47 (1995) 397.

    Article  CAS  Google Scholar 

  4. Y. Ohtake and M. Furukawa, Int. Polym. Sci. Tech., 22 (1995) T/74.

    Google Scholar 

  5. K. H. Nordsiek and J. Wolpers, Kaut. Gummi Kunstst., 45 (1992) 791.

    CAS  Google Scholar 

  6. K. H. Nordsiek, Rubber World, December 1987, p. 30.

  7. C. M. Kok, Eur. Polym. J., 23 (1987) 611.

    Article  CAS  Google Scholar 

  8. C. T. Loo, Polymer, 15 (1974) 357.

    Article  CAS  Google Scholar 

  9. N. J. Morrison and M. Porter, Plast. Rubb. Proc. Appl., 3 (1983) 295.

    CAS  Google Scholar 

  10. M. R. Krejsa and J. L. Koenig, Rubb. Chem. Tech., 3 (1993) 376.

    Google Scholar 

  11. A. V. Chapman and M. Porter, Natural Rubber Science and Technology, A. D. Roberts (Ed.), Oxford University Press, Oxford 1988, p. 511.

    Google Scholar 

  12. H. Modrow, J. Hormes, R. Visel and R. Zimmer, Rubb. Chem. Tech., 74 (2001) 281.

    CAS  Google Scholar 

  13. H. Modrow, R. Zimmer, F. Visel and J. Hormes, Kaut. Gummi Kunstst., 53 (2000) 328.

    CAS  Google Scholar 

  14. D. F. Parra and J. R. Matos, J. Therm. Anal. Cal., 67 (2002) 287.

    Article  CAS  Google Scholar 

  15. D. Barnard and P. M. Lewis, Natural Rubber Science and Technology, A. D. Roberts (Ed.), Oxford University Press, Oxford 1988, p. 621.

    Google Scholar 

  16. J. S. Dick and H. Pawlowski, ITEC '96 Select, p. 111.

  17. W. Kim, J.-W. Bae, I. D. Choi and Y.-S. Kim, Polym. End. Sci., 39 (1999) 756.

    Article  CAS  Google Scholar 

  18. S. E. Gwaily, M. M. Abdel-Aziz and M. Madani, Polym. Testing, 17 (1998) 265.

    Article  CAS  Google Scholar 

  19. Y. Agari, A. Ueda and S. Nagai, J. Appl. Polym. Sci., 43 (1991) 1117.

    Article  CAS  Google Scholar 

  20. Y. Agari, A. Ueda and S. Nagai, J. Appl. Polym. Sci., 49 (1993) 1625.

    Article  CAS  Google Scholar 

  21. S. C. Cheng and R. I. Vachon, Int. J. Mass Transfer, 12 (1969) 249.

    Article  CAS  Google Scholar 

  22. S. Okamoto and H. Ishida, J. Appl. Polym. Sci., 72 (1999) 1689.

    Article  CAS  Google Scholar 

  23. L. E. Nielson, Ind. Eng. Chem. Fundam., 13 (1974) 17.

    Article  Google Scholar 

  24. Y. Agari, A. Ueda and S. Nagai, J. Appl. Polym. Sci., 42 (1991) 1665.

    Article  CAS  Google Scholar 

  25. J. P. Berry and W. F. Watson, J. Polym. Sci., 18 (1955) 201.

    Article  CAS  Google Scholar 

  26. K. Murakami and S. Tamura, J. Polym. Sci., Polym. Lett., 11 (1973) 317.

    Article  CAS  Google Scholar 

  27. S. Tamura, Polymer, 21 (1980) 1398.

    Article  CAS  Google Scholar 

  28. S. Tamura, M. Murakami and H. Kuwazoe, J. Appl. Polym. Sci., 28 (1983) 3467.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Burlett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burlett, D.J. Thermal techniques to study complex elastomer/filler systems. Journal of Thermal Analysis and Calorimetry 75, 531–544 (2004). https://doi.org/10.1023/B:JTAN.0000027143.59565.5f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JTAN.0000027143.59565.5f

Navigation