Skip to main content

Nonlinear Viscoelasticity of One Dimensional Filler Reinforced Elastomer Composites

  • Chapter
  • First Online:
Non-Linear Viscoelasticity of Rubber Composites and Nanocomposites

Part of the book series: Advances in Polymer Science ((POLYMER,volume 264))

Abstract

In this chapter, we review the elastomeric composites with different types of one dimensional nanofillers e.g. nanotubes, nanorods and nanofibers. Various elastomers and nanofillers have been considered along with the preparation methods of the composites. The dispersion level and surface morphologies have been reported having various fillers and how do they vary with the chemical modifications on the filler along with the effect of dispersing agent. The improvement in thermal and mechanical properties including dynamic mechanical properties of elastomers has been discussed in presence of one-dimensional nanofillers. Viscoelasticity has been reviewed for elastomeric systems and, especially, how the non-linearity appears in presence of one-dimensional filler. Rheological properties including curing kinetics, storage and loss modulus, and complex viscosities as a function of frequency of the nanocomposites have been discussed in detail. Dynamic mechanical studies related to various elastomer nanocomposites with various one dimensional fillers have been reported with possible explanations. The influence of the nature of fillers with their chemical modifications of one-dimensional filler on the viscoelasticity has also been assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kumar KD, Tsou AH, Bhowmick AK (2010) Unique tackification behavior of needle-like sepiolite nanoclay in brominated isobutylene-co-p-methylstyrene (BIMS) rubber. Macromolecules 43:4184–4193

    CAS  Google Scholar 

  2. Dannenberg EM (1975) Bound rubber carbon black reinforcement. Rubber Chem Technol 48:410–444

    CAS  Google Scholar 

  3. Maiti P, Batt CA, Giannelis EP (2007) New biodegradable polyhydroxybutyrate/layered silicate nanocomposites. Biomacromolecules 8:3393–3400

    CAS  Google Scholar 

  4. Okamoto M, Nam PH, Maiti P, Kotaka T, Nakayama T, Takada M, Ohshima M, Usuki A, Hasegawa N, Okamoto H (2001) Biaxial flow-induced alignment of silicate layers in polypropylene/clay nanocomposite foam. Nano Lett 1(9):503–505

    CAS  Google Scholar 

  5. Maiti P (2003) Influence of miscibility on viscoelasticity, structure and intercalation of oligo-poly(caprolactone)/layered silicate nanocomposites. Langmuir 19:5502–5510

    CAS  Google Scholar 

  6. Ray SS, Maiti P, Okamoto M, Yamada K, Ueda K (2002) New polylactide/layered silicate nanocomposites. 1. Preparation, characterization and properties. Macromolecules 35:3104–3110

    CAS  Google Scholar 

  7. Mishra A, Purkayastha BPD, Roy JK, Aswal VK, Maiti P (2010) Tunable properties of self-assembled polyurethane using two-dimensional nanoparticles: potential nano-biohybrid. Macromolecules 43:9928–9936

    CAS  Google Scholar 

  8. Tiwari VK, Shripathi T, Lalla NP, Maiti P (2012) Nanoparticle induced piezoelectric, super toughened, radiation resistant, multi-functional nanohybrids. Nanoscale 4:167–175

    CAS  Google Scholar 

  9. Jana KK, Ray B, Avasthi DK, Maiti P (2012) Conducting nano-channels in an induced piezoelectric polymeric matrix using swift heavy ions and subsequent functionalization. J Mater Chem 22:3955–3964

    CAS  Google Scholar 

  10. Jana KK, Vishwakarma NK, Ray B, Khan SA, Avasthi DK, Misra M, Maiti P (2013) Nanochannel conduction in piezoelectric polymeric membrane using swift heavy ions and nanoclay. RSC Adv 3:6147–6159

    CAS  Google Scholar 

  11. Maiti P, Yadav PJP (2008) Biodegradable nanocomposites of poly(hydroxybutyrate-co-hydroxyvalerate): the effect of nanoparticles. J Nanosci Nanotechnol 8:1858–1866

    CAS  Google Scholar 

  12. Singh NK, Purkayastha BPD, Roy JK, Banik RM, Yashpal M, Singh G, Malik S, Maiti P (2010) Nanoparticle-induced controlled biodegradation and its mechanism in poly(å-caprolactone). ACS Appl Mater Interfaces 2(1):69–81

    CAS  Google Scholar 

  13. Beatty JR (1969) A mechanical method for estimating both tackiness and stickiness of rubber compounds. Rubber Chem Technol 42:1040–1053

    CAS  Google Scholar 

  14. Beckwith RK, Welch LM, Nelson JF (1950) Tack of butyl and natural rubbers. Rubber Chem Technol 23:933–944

    Google Scholar 

  15. Fritzsche J, Lorenz H, Kluppel M (2009) CNT based elastomer-hybrid nanocomposites with promising mechanical and electrical properties. Macromol Mater Eng 294:551–560

    CAS  Google Scholar 

  16. Bokobza L, Rahmani M, Belin C (2008) Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers. J Polym Sci B Polym Phys 46:1939–1951

    CAS  Google Scholar 

  17. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    CAS  Google Scholar 

  18. Zhu J, Wei S, Ryu J, Budhathoki M, Liang G, Guo Z (2010) In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J Mater Chem 20:4937–4948

    CAS  Google Scholar 

  19. Laraba-Abbes F, Ienny P, Piques R (2003) A new ‘Tailor-made’ methodology for the mechanical behaviour analysis of rubber-like materials: II. Application to the hyperelastic behaviour characterization of a carbon-black filled natural rubber vulcanizate. Polymer 44:821–840

    CAS  Google Scholar 

  20. Tian M, Su LL, Cai WT, Win S, Chen Q, Fong H, Zhang LQ (2011) Mechanical properties and reinforcement mechanisms of hydrogenated acrylonitrile butadiene rubber composites containing fibrillar silicate nanofibers and short aramid microfibers. J Appl Polym Sci 120:1439–1447

    CAS  Google Scholar 

  21. Murty VM, De SK (1984) Short-fiber-reinforced styrene-butadiene rubber composites. J Appl Polym Sci 29:1355–1368

    CAS  Google Scholar 

  22. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity strength and toughness of nanorods and nanotubes. Science 277:1971–1975

    CAS  Google Scholar 

  23. Gogotsi Y (2010) High-temperature rubber made from carbon nanotubes. Science 330:1332–1333

    CAS  Google Scholar 

  24. Shrivastava NK, Suin S, Maiti S, Khatua BB (2013) Ultralow electrical percolation threshold in poly(styrene-co-acrylonitrile)/carbon nanotube nanocomposites. Ind Eng Chem Res 52:2858–2868

    CAS  Google Scholar 

  25. Dyke CA, Tour JM (2003) Solvent-free functionalization of carbon nanotubes. J Am Chem Soc 125:1156–1157

    CAS  Google Scholar 

  26. Saengsuwan S, Saikrasun S (2012) Thermal stability of styrene-(ethylene butylene)-styrene-based elastomer composites modified by liquid crystalline polymer, clay and carbon nanotube. J Therm Anal Calorim 110:1395–1406

    CAS  Google Scholar 

  27. Zha JW, Shehzad K, Li WK, Dang ZM (2013) The effect of aspect ratio on the piezoresistive behavior of the multiwalled carbon nanotubes/thermoplastic elastomer nanocomposites. J Appl Phys 113:014102

    Google Scholar 

  28. Heinrich G, Kluppel M, Vilgis TA (2002) Reinforcement of elastomers. Curr Opin Solid State Mater Sci 6:195–203

    CAS  Google Scholar 

  29. Falco AD, Marzocca AJ, Corcuera MA, Eceiza A, Mondragon I, Rubiolo H, Goyanes S (2009) Accelerator adsorption onto carbon nanotubes surface affects the vulcanization process of styrene-butadiene rubber composites. J Appl Polym Sci 113:2851–2857

    Google Scholar 

  30. Singh NK, Singh SK, Dash D, Gonugunta P, Misra M, Maiti P (2013) CNT Induced β-phase in polylactide: unique crystallization, biodegradation, and biocompatibility. J Phys Chem C 117:10163–10174

    CAS  Google Scholar 

  31. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    CAS  Google Scholar 

  32. Kim HH, Kim HJ (2006) Preparation of carbon nanotubes by DC are discharge process under reduced pressure in an air atmosphere. Mater Sci Eng B 133:241–244

    CAS  Google Scholar 

  33. Che G, Lakshmi BB, Martin CR, Fisher ER (1998) Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chem Mater 10:260–267

    CAS  Google Scholar 

  34. Hornbostel B, Haluska M, Cech J, Dettlaff U, Roth S (2006) Arc discharge and laser ablation synthesis of single-walled carbon nanotubes. NATO Science Series II: Mathematics. Phys Chem 222:1–18

    CAS  Google Scholar 

  35. Dateo CE, Gokcen T, Meyyappan M (2002) Modeling of the HiPco process for carbon nanotube production. 1. Chemical kinetics. J Nanosci Nanotechnol 2:523–34

    CAS  Google Scholar 

  36. Zajickova L, Jasek O, Elias M, Synek P, Lazar L, Schneeweiss O, Hanzlikova R (2010) Synthesis of carbon nanotubes by plasma-enhanced chemical vapor deposition in an atmospheric-pressure microwave torch. Pure Appl Chem 82:1259–1272

    CAS  Google Scholar 

  37. Tasis D, Tagmetarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    CAS  Google Scholar 

  38. Wang Z, Zu X, Gao F, Weber WJ (2006) Atomistic simulation of brittle to ductile transition in GaN nanotubes. Appl Phys Lett 89:243123

    Google Scholar 

  39. Lohse SE, Purphy CJ (2013) The quest for shape control: a history of gold nanorod synthesis. Chem Mater 25:1250–1261

    CAS  Google Scholar 

  40. Eustis S, EI-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217

    CAS  Google Scholar 

  41. Burda C, Chen X, Narayanan R, El-Sayed A (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    CAS  Google Scholar 

  42. Koerner H, Kelley J, George J, Drummy L, Mirau P, Bell NS, Hsu JWP, Vaia RA (2009) ZnO nanorod–thermoplastic polyurethane nanocomposites: morphology and shape memory performance. Macromolecules 42:8933–8942

    CAS  Google Scholar 

  43. Alexander KD, Skinner K, Zhang S, Wei H, Lopez R (2010) Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate. Nano Lett 10:4488–4493

    CAS  Google Scholar 

  44. Rybinski P, Janowska G (2012) Thermal properties and flammability of nanocomposites based on nitrile rubbers and activated halloysite nanotubes and carbon nanofibers. Thermochim Acta 549:6–12

    CAS  Google Scholar 

  45. Wu N, Chen L, Li J et al (2012) Preparation and characterization of Fe3+, La3+ Co-doped Tio2 nanofibers and its photocatalytic activity. J Eng Fibers Fabrics 7:16–20

    CAS  Google Scholar 

  46. Lu W, Steiqerwalt ES, Moore JT, Sullivan LM, Collins WE, Lukehart CM (2004) Carbothermal transformation of a graphitic carbon nanofiber/silica aerogel composite to a SiC/silica nanocomposite. J Nanosci Nanotechnol 4(7):803–8

    CAS  Google Scholar 

  47. Borrell A, Rocha VG, Torrecillas R, Fernandez A (2011) Improvement of carbon nanofibers/ZrO2 composites properties with a zirconia nanocoating on carbon nanofibers by sol–gel method. J Am Ceram Soc 94:2048–2052

    CAS  Google Scholar 

  48. Azad AM, Noibi M, Ramachandran M (2007) Fabrication and characterization of 1-D alumina (Al2O3) nanofibers in an electric field. Bull Pol Acad Tech 55:195–201

    Google Scholar 

  49. Zhang B, Liu Y, Huang Z, Oh S, Yu Y, Mai YW, Kim JK (2012) Urchin-like Li4 Ti5O12–carbon nanofiber composites for high rate performance anodes in Li-ion batteries. J Mater Chem 22:12133–12140

    CAS  Google Scholar 

  50. Tishchenko NI, Kolesnichenko VG, Dubovitskaya NV, Silenko PM, Danilenko NI, Zgalat-Lozinskii OB, Bulanov VN, Ragulya AV (2009) Surface modification of silicon nitride nanofibers with titanium nitride particle. Powder Metallurgy Met Ceram 48:627–633

    CAS  Google Scholar 

  51. Poudel P, Zhang L, Joshi P, Venkatesan S, Fong H, Qiao Q (2012) Enhanced performance in dye-sensitized solar cells via carbon nanofibers-platinum composite counter electrodes. Nanoscale 4:4726–4730

    CAS  Google Scholar 

  52. Camean I, Garcia AB, Suelves I (2012) Graphitized carbon nanofibers for use as anodes in lithium-ion batteries: importance of textural and structural properties. J Power Source 198:303–307

    CAS  Google Scholar 

  53. Monroe N (2011) Increasing the efficiency of a hybrid polymer photovoltaic cell with polymer nanofiber complexes of varied thickness. Young Sci J 8:26–32

    Google Scholar 

  54. Ballengee JB, Haugen GM, Hamrock SJ, Pintauro PN (2013) Properties and fuel cell performance of a nanofiber composite membrane with 660 equivalent weight perfluorosulfonic acid. J Electrochem Soc 160(4):F429–F435

    CAS  Google Scholar 

  55. Jin EM, Zhao XG, Park JY, Gu HB (2012) Enhancement of the photoelectric performance of dye-sensitized solar cells using Ag-doped TiO2 nanofibers in a TiO2 film as electrode. Nanoscale Res Lett 7(97):1–5

    Google Scholar 

  56. Luo Z, Charlie Johnson AT. Growth of carbon nanotubes via chemical vapor deposition, NSF Award no. EEC-0754741

    Google Scholar 

  57. Gao J, Hu M, Dong Y, Li RKY (2013) Graphite-nanoplatelet-decorated polymer nanofiber with improved thermal, electrical, and mechanical properties. ACS Appl Mater Interfaces 5(16):7758–7764

    CAS  Google Scholar 

  58. Maiti P, Yamada K, Okamoto M, Ueda K, Okamoto K (2002) New polylactide/layered silicate nanocomposites: role of organoclays. Chem Mater 14:4654–4661

    CAS  Google Scholar 

  59. Maiti P, Nam PH, Okamoto M, Hasegawa N, Usuki A (2002) Influence of crystallization on intercalation, morphology, and mechanical properties of polypropylene/clay nanocomposites. Macromolecules 35(6):2042–2049

    CAS  Google Scholar 

  60. Okamoto M, Nam PH, Maiti P, Kotaka T, Hasegawa N, Usuki A (2001) A house of cards structure in polypropylene/clay nanocomposites under elongational flow. Nano Lett 1(6):295–298

    CAS  Google Scholar 

  61. Tiwari VK, Prasad AK, Singh V, Jana KK, Misra M, Prasad CD, Maiti P (2013) Nanoparticle and process induced super toughened piezoelectric hybrid materials: the effect of stretching on filled system. Macromolecules 46:5595–5603

    CAS  Google Scholar 

  62. Shankar SSV, Dinesh R, Thomas T (2010) Experimental study on manufacture and analysis of rubber nanoclay MWCNT composite. Int J Environ Sci Dev 1(2):181–183

    Google Scholar 

  63. Lima AMF, de Castro VG, Borges RS, Silva GG (2012) Electrical conductivity and thermal properties of functionalized carbon nanotubes/polyurethane composites. Polímeros Ciencia e Tecnologia 22(2):117–124

    CAS  Google Scholar 

  64. Guo S, Zhang C, Wang W et al (2008) Preparation and characterization of polyurethane/multiwalled carbon nanotube composites. Polym Polym Compos 16:471–478

    Google Scholar 

  65. Sui G, Zhong WH, Yang XP, Yu YH, Zhao SH (2008) Preparation and properties of natural rubber composites reinforced with pretreated carbon nanotubes. Polym Adv Technol 19:1543–1549

    CAS  Google Scholar 

  66. Jyotishkumar P, Abraham E, George SM, Elias E, Pionteck J, Moldenaers P, Thomas S (2013) Preparation and properties MWCNTs/poly(acrylonitrilestyrene- butadiene)/epoxy hybrid composites. J Appl Polym Sci 127:3093–3103

    CAS  Google Scholar 

  67. Tibbetts GG, Lake ML, Strong KL (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos Sci Technol 67:1709–18

    CAS  Google Scholar 

  68. Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287:395–403

    CAS  Google Scholar 

  69. Xie XL, Mai YW, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R Rep 49:89–112

    Google Scholar 

  70. Tsubokawa N (2005) Preparation and properties of polymer grafted carbon nanotubes and nanofibers. Polym J 37(9):637–655

    CAS  Google Scholar 

  71. Shanks R, Kong I (2012) Thermoplastic elastomers. InTech. ISBN 978-953-51-0346-2

    Google Scholar 

  72. Pedroni LG, Araujo JR, Felisberti MI, Nogueira AF (2012) Nanocomposites based on MWCNT and styrene–butadiene–styrene block copolymers: effect of the preparation method on dispersion and polymer–filler interactions. Compos Sci Technol 72:1787–1492

    Google Scholar 

  73. Alipour A (2012) Fabrication and characterization of nanostructured polymer composites prepared by melt compounding. Int J Biosci Biochem Bioinform 2:79–84

    Google Scholar 

  74. Siengchin S (2011) Nano-scale reinforcing and toughening thermoplastics: processing, structure and mechanical properties. InTech. ISBN 978-953-307-420-7

    Google Scholar 

  75. Deng F, Ito M, Noguchi T, Wang L, Ueki H, Niihara K, Kim YA, Endo M, Zheng QS (2011) Elucidation of the reinforcing mechanism in carbon nanotube/rubber nanocomposites. ACS Nano 5:3858–3866

    CAS  Google Scholar 

  76. Bokobza L (2012) Enhanced electrical and mechanical properties of multiwall carbon nanotube rubber composites. Polym Adv Technol 23:1543–1549

    CAS  Google Scholar 

  77. Endo M (1988) Grow carbon-fibers in the vapor-phase. Chem-Tech 18:568–576

    CAS  Google Scholar 

  78. Endo M, Kim YA, Hayashi T, Nishimura K, Matusita K, Dresselhaus MS (2001) Vapor-grown carbon fibers (VGCFs): basic properties and their battery applications. Carbon 39:1287–1297

    CAS  Google Scholar 

  79. Cadambi RM, Ghassemieh E (2011) Optimized process for the inclusion of carbon nanotubes in elastomers with improved thermal and mechanical properties. J Appl Polym Sci 124:4993–5001

    Google Scholar 

  80. Hu Y, Shenderova OA, Hu Z, Padgett CW, Brenner DW (2006) Carbon nanostructures for advanced composites. Rep Prog Phys 69:1847–1895

    CAS  Google Scholar 

  81. Coleman JN, Khan U, Blau WJ, Gunko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44(9):1624–1652

    CAS  Google Scholar 

  82. Wang W, Jiang F, Jiang Y, Lu Y, Zhang L (2012) Preparation and properties of polyurethane/multiwalled carbon nanotube nanocomposites by a spray drying process. J Appl Polym Sci 126:789–795

    CAS  Google Scholar 

  83. Barick AK, Tripathy DK (2012) Preparation and characterization of carbon nanofiber reinforced thermoplastic polyurethane nanocomposites. J Appl Polym Sci 124:765–780

    CAS  Google Scholar 

  84. Sui G, Zhong WH, Ren X (2009) Structure, mechanical properties and friction behavior of UHMWPE/HDPE/carbon nanofibers. Mater Chem Phys 115(1):404–412

    CAS  Google Scholar 

  85. Li Y, Shimizu H (2009) Toward a stretchable, elastic, and electrically conductive nanocomposite: morphology and properties of poly[styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules 42:2587–2593

    CAS  Google Scholar 

  86. Potschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45:8863–8870

    Google Scholar 

  87. Fan X, Wang Z, Wang K, Deng H, Chen F, Fu Q (2012) Acid-modified carbon nanotubes distribution and mechanical enhancement in polystyrene/elastomer blends. Polym Eng Sci 52:964–971

    CAS  Google Scholar 

  88. Puglia D, Valentini I, Kenny JM (2003) Analysis of the cure reaction of carbon nanotubes/epoxy resin composites through thermal analysis and Raman spectroscopy. J Appl Polym Sci 88:452–458

    CAS  Google Scholar 

  89. Sui G, Zhong W, Yang X, Zhao S (2007) Processing and material characteristics of a carbon-nanotube-reinforced natural rubber. Macromol Mater Eng 292:1020–1026

    CAS  Google Scholar 

  90. Szymczyk A (2012) Poly(trimethylene terephthalate-block-tetramethylene oxide) elastomer/single-walled carbon nanotubes nanocomposites: synthesis, structure, and properties. J Appl Polym Sci 126:796–807

    CAS  Google Scholar 

  91. Zhu J, Wei S, Ryu J, Guo Z (2011) Strain-sensing elastomer/carbon nanofiber “Metacomposites”. J Phys Chem C 115:13215–13222

    CAS  Google Scholar 

  92. Maiti P, Nandi AK (1995) Influence of chain structure on the miscibility of poly(viny1idene fluoride) with poly(methyl acrylate). Macromolecules 28:8511–8516

    CAS  Google Scholar 

  93. Maiti P, Chatterjee J, Nandi AK (1993) Melting and crystallization behaviour of poly(vinylidene fluoride) in its blends with polyacrylates, polyacrylates, poly(vinyl esters) and poly(aryl ether ether ketone). Polymer 34:4273–4279

    CAS  Google Scholar 

  94. Nah C, Lim JY, Cho BH, Hong CK, Gent AN (2010) Reinforcing rubber with carbon nanotubes. J Appl Polym Sci 118:1574–1581

    CAS  Google Scholar 

  95. Shanmugharaj AM, Bae JH, Lee KY, Noh WH, Lee SH, Ryu SH (2007) Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Compos Sci Technol 67:1813–1822

    CAS  Google Scholar 

  96. Koerner H, Liu W, Alexander M (2005) Deformation-morphology correlations in electrically conductive carbon nanotube-thermoplastic polyurethane nanocomposites. Polymer 46:4405–4420

    CAS  Google Scholar 

  97. Fornes TD, Paul DR (2003) Modeling properties of nylon6/clay nanocomposites using composite theories. Polymer 44:4993–5013

    CAS  Google Scholar 

  98. Quijano JRB, Aviles F, Cauich-Rodriguez JV (2013) Sensing of large strain using multiwall carbon nanotube/segmented polyurethane composites. J Appl Polym Sci. doi:10.1002/APP. 1-8

    Google Scholar 

  99. Bhattacharyya S, Sinturel C, Bahloul O, Saboungi ML, Thomas S, Salvetat JP (2008) Improving reinforcement of natural rubber by networking of activated carbon nanotubes. Carbon 46:1037–1045

    CAS  Google Scholar 

  100. Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–26

    CAS  Google Scholar 

  101. Tiwari VK, Kulriya PK, Avasthi DK, Maiti P (2009) Poly(Vinylidene fluoride-co-hexafluro propylene)/layered silicate nanocomposites: the effect of swift heavy ion. J Phys Chem B 113:11632–11641

    CAS  Google Scholar 

  102. Visakh PM, Thomas S, Oksman K, Mathew AP (2012) Effect of cellulose nanofibers isolated from pulp residue on vulcanized natural rubber. BioResources 7(2):2156–2168

    CAS  Google Scholar 

  103. Geethamma VG, Kalaprasad G, Groeninckx G, Thomas S (2005) Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Compos Part A Appl Sci Manuf 36:1499–1506

    Google Scholar 

  104. Sui G, Zhong WH, Yang XP, Yu YH (2008) Curing kinetics and mechanical behavior of natural rubber reinforced with pretreated carbon nanotubes. Mater Sci Eng A 485:524–531

    Google Scholar 

  105. Kueseng K, Jacob KI (2006) Natural rubber nanocomposites with SiC nanoparticles and carbon nanotubes. Eur Polym J 42:220–227

    CAS  Google Scholar 

  106. Du M, Guo B, Lei Y, Liu M, Jia D (2008) Carboxylated butadiene-styrene rubber/halloysite nanotube nanocomposites: interfacial interaction and performance. Polymer 49:4871–4876

    CAS  Google Scholar 

  107. Charman M, Leonardi F, Dominguez S, Bissuel C, Derail C (2011) Dispersion of multiwalled carbon nanotubes in a rubber matrix using an internal mixer: effects on rheological and electrical properties. J Polym Sci B: Polym Phys 49:1597–1604

    CAS  Google Scholar 

  108. Zhang Q, Rastogi S, Chen D, Lippits D, Lemstra PJ (2006) Low percolation threshold in single-walled carbon nanotube/high density polyethylene composites prepared by melt processing technique. Carbon 44:778–785

    CAS  Google Scholar 

  109. Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37:9048–9055

    CAS  Google Scholar 

  110. Costa FR, Wagenknecht U, Jehnichen D, Goad MA, Heinrich G (2006) Nanocomposites based on polyethylene and Mg-Al layered double hydroxide. Part II. Rheological characterization more. Polymer 47:1649–1660

    CAS  Google Scholar 

  111. Auad ML, Mosiewicki MA, Uzunpinar C, Williams RJJ (2009) Single-wall carbon nanotubes/epoxy elastomers exhibiting high damping capacity in an extended temperature range. Compos Sci Technol 69:1088–1092

    CAS  Google Scholar 

  112. Fan Z, Advani SG (2007) Rheology of multiwall carbon nanotube suspension. J Rheol 51(4):585–604

    CAS  Google Scholar 

  113. Galgali G, Ramesh C, Lele A (2001) A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites. Macromolecules 34:852–858

    CAS  Google Scholar 

  114. Schmidt G, Nakatani AI, Butler PD (2000) Shear orientation of viscoelastic polymer-clay solutions probed by flow birefringence and SANS. Macromolecules 33:7219–7222

    CAS  Google Scholar 

  115. Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8:1728–1734

    CAS  Google Scholar 

  116. Hemmati M, Narimani A, Shariatpanahi H (2011) Study on morphology, rheology and mechanical properties of thermoplastic elastomer polyolefin (TPO)/carbon nanotube nanocomposites with reference to the effect of polypropylene-grafted-maleic anhydride (PP-g-MA) as a compatibilizer. Int J Polym Mater 60:384–397

    CAS  Google Scholar 

  117. Lin L, Liu S, Zhang Q, Li X, Ji M, Deng H, Fu Q (2013) Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer. ACS Appl Mater Interfaces 5:5815–5824

    CAS  Google Scholar 

  118. Aranguren MI, Mora E, DeGroot JV, Macosko CW (1992) Rheology and microstructure of filled polymer melts. J Rheol 36:1165–1182

    CAS  Google Scholar 

  119. Krishnamoorti R, Giannelis EP (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 30:4097–4102

    CAS  Google Scholar 

  120. Kelarakis A, Yoon K, Chu B et al (2005) Rheological study of carbon nanofiber induced physical gelation in polyolefin nanocomposite melt. Polymer 46:11591–11599

    CAS  Google Scholar 

Download references

Acknowledgements

The author (Karun Kumar Jana) gratefully acknowledges the award of Senior Research Fellowship of CSIR, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pralay Maiti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jana, K.K., Patel, M., Rana, D., Maiti, P. (2014). Nonlinear Viscoelasticity of One Dimensional Filler Reinforced Elastomer Composites. In: Ponnamma, D., Thomas, S. (eds) Non-Linear Viscoelasticity of Rubber Composites and Nanocomposites. Advances in Polymer Science, vol 264. Springer, Cham. https://doi.org/10.1007/978-3-319-08702-3_2

Download citation

Publish with us

Policies and ethics