Skip to main content

General Purpose Elastomers: Structure, Chemistry, Physics and Performance

  • Chapter
  • First Online:
Advances in Elastomers I

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 11))

Abstract

Elastomers are unique to polymers and exhibit extraordinary reversible extension with low hysteresis and minimal permanent set. They are the ideal polymers relieved of molecular interactions, crystallinity and chain rigidity constraints. The common elastomers have characteristic low modulus, though with poor abrasion and chemical resistance. Theoretical concepts have been established for their thermodynamics and kinetics and this knowledge has been applied to extending their properties by design of chemical and molecular structures, or by modification by control of crosslinking, blending or additions of fillers. This chapter reviews elastomer theory and the demanding range of properties expected. Natural rubber is the starting material for introduction of chemistries that introduce damping, abrasion resistance and higher modulus through copolymerization and interacting functional groups. Heteroatoms such as fluorine, silicon, oxygen and nitrogen are shown to extend properties and give chemical resistance. Thermoplastic elastomers move beyond typical cured systems due to formation of two-phase block copolymers. Finally modification by filler and blended systems is considered, followed by introduction to shape memory materials and a brief comment on the future trends. The unique and diverse properties and performance of elastomers continues to be a fascinating field for science and application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

∆H:

Enthalpy change

∆S:

Entropy change

Δγ:

Wetting surface tension

A:

Helmholtz free energy

COPA:

Polyamide/elastomer block copolymer

COPE:

Polyether ester/elastomer block copolymer

CR:

Polychloroprene

DSC:

Differential scanning calorimetry

EPDM:

Ethylene propylene diene monomer

EPM:

Ethylene-propylene random copolymer

FKM:

Fluorocarbon elastomer

G:

Gibbs free energy

IIR:

Butyl rubber

IPN:

Interpenetrating blend

iPP:

Isotactic polypropylene

NBR:

Acrylonitrile butadiene rubber

NC :

Critical entanglement spacing

NR:

Natural rubber, poly(cis-1,4-isoprene)

PCEA:

Polycarbonateesteramide

PDMS:

Polydimethylsiloxane

PEA:

Polyesteramides

PEEA:

Polyetheresteramide

PE-b-A:

Polyether-block-amide

POSS:

Polyhedral oligomeric silsequioxanes

PSR:

Polysulfide

PU:

Polyurethane

SBC:

Styrenic block copolymer

SBR:

Styrene butadiene rubber, poly(butadiene-co-styrene)

SBS:

Styrene-butadiene-styrene

SEBS:

Styrene-ethylene/butylene-styrene

SEEPS:

Styrene-ethylene/ethylene/propylene-styrene

SEPS:

Styrene-ethylene/propylene-styrene

SIBS:

Styrene-isobutylene-styrene

SIS:

Styrene-isoprene-styrene

SR:

Silicones rubber

TPE:

Thermoplastic elastomer

TPO:

Polyolefin blends

TPV:

Dynamically vulcanized blend

U:

Internal energy

W:

Work done on a system

WC :

Fraction of crystallinity

References

  1. Flory, P.J.: Principles of Polymer Chemistry, pp. 432–494. Cornell University Press, Ithaca (1953)

    Google Scholar 

  2. Elias, H.-G.: An Introduction to Polymer Science, pp. 333–354. VCH Publishers, Weinheim (1997)

    Google Scholar 

  3. Sperling, L.H.: Introduction to Physical Polymer Science, 4th edn, pp. 349–506. Wiley-Interscience, Hoboken (2006)

    Google Scholar 

  4. Ullman, R.: Rubber elasticity. In: Cahn, R.W., Haasen, P., Kramer, E.J. (eds.) Materials Science and Technology, pp. 357–388. Weiheim, VCH (1993)

    Google Scholar 

  5. Elias, H.-G.: Macromolecules, Volume 3, Physical Structure and Properties. Wiley VCH, Weinheim, p. 65 (2008)

    Google Scholar 

  6. Suphadon, N., Thomas, A.G., Busfield, J.J.C.: The viscoelastic behaviour of rubber under a small simple shear oscillation superimposed on a large pure shear. Polym. Testing 29, 440–444 (2010)

    Article  CAS  Google Scholar 

  7. Elias, H.-G.: An Introduction to Polymer Science, p. 170. VCH, Weinheim (1997)

    Google Scholar 

  8. Sperling, L. H.: Introduction to Polymer Sciences, 4th edn. Wiley-Interscience, p. 427 (2006)

    Google Scholar 

  9. Robert, C.K.: Chapter 1. In: Rudiger, M., Hans, M. (eds.) Handbook of Specialty Elastomers, CRC Press, USA, pp. 1–37 (2008)

    Google Scholar 

  10. Robert, C.K.: Chapter 11. In: Stephen, K.F., Robert, C.K. (eds.) Handbook of Specialty Elastomers, CRC Press, USA, pp. 371–385 (2008)

    Google Scholar 

  11. Buckley, C.P., Prisacariu, C., Martin, C.: Elasticity and inelasticity of thermoplastic polyurethane elastomers: Sensitivity to chemical and physical structure. Polymer 51, 3213–3224 (2010)

    Article  CAS  Google Scholar 

  12. Francois, C.: Materials Handbook, 2nd edn, pp. 691–750. Springer, London (2008). (Chapter 11)

    Google Scholar 

  13. Brandrup, J., Immergut, E.H.: Polymer Handbook, 2nd edn. Wiley-Interscience, Canada (1975)

    Google Scholar 

  14. Sonnenschein, M.F., Guillaudeu, S.J., Landes, B.G., Wendt, B.L.: Comparison of adipate and succinate polyesters in thermoplastic polyurethanes. Polymer 51, 3685–3692 (2010)

    Article  CAS  Google Scholar 

  15. Robert, C.K.: Chapter 4. In: Pascal, F. (ed.) Handbook of Specialty Elastomers, CRC Press, Raton, pp. 134–154 (2008)

    Google Scholar 

  16. John, S.: Chapter 2. In: Arcella, V., Ferro, R. (ed.) Modern Fluoropolymers, Wiley, West Sussex, pp. 71–90 (1997)

    Google Scholar 

  17. Jiri, G.D.: Handbook of Thermoplastic Elastomer, pp. 161–177. William Andrew Publishing, New York (2007). (Chapter 5)

    Google Scholar 

  18. Giovanni, P., Antonio, M., Dario, B., Simona, S.: Effect of composition on the properties of SEBS modified asphalts. Eur. Polym. J. 42, 1113–1121 (2006)

    Article  Google Scholar 

  19. Elseifi, M.A., Flintsch, G.W., Al-Qadi, I.L.: Quantitative effect of elastomeric modifcation on binder performance at intermediate and high temperatures. J. Mater. Civ. Eng. 15, 32–40 (2003)

    Article  CAS  Google Scholar 

  20. Geoffrey, H., Hans, R.K., Roderic, P.Q.: Thermoplastic Elastomers, pp. 217–246. Carl Hanser Verlag, Munich (2004). (Chapter 9)

    Google Scholar 

  21. Jiri, G.D.: Handbook of Thermoplastic Elastomer, pp. 235–347. William Andrew Publishing, New York (2007). (Chapter 10)

    Google Scholar 

  22. Brydson, J.A.: Thermoplastic elastomers-properties and applications. Rapra Rev. Rep. 7, 4–18 (1995)

    Google Scholar 

  23. Alfonso, R.-G., Lourdes, F., Jordi, P.: Degradable poly(ester amide)s for biomedical applications. Polymers 3, 65–99 (2011)

    Google Scholar 

  24. Hao, C., Paulina, S.H., Daniel, J.S., Nathaniel, V., Abigail, K.R.L.J., Seung-Woo, C., Anne, Y., Robert, L., Daniel, G.A.: A novel family of biodegradable poly(ester amide) elastomers. Adv. Healthc. Mater. 23, 95–100 (2011)

    Article  Google Scholar 

  25. White, J.R., De, S.K.: Rubber Technologist’s Handbook, pp. 87–130. Rapra Technology Limited, Exeter (2001). (Chapter 4)

    Google Scholar 

  26. Jiri, G.D.: Handbook of Thermoplastic Elastomer, pp. 249–264. William Andrew Publishing, New York (2007). (Chapter 11)

    Google Scholar 

  27. Jiri, G.D.: Handbook of Thermoplastic Elastomer, pp. 191–199. William Andrew Publishing, New York (2007). (Chapter 7)

    Google Scholar 

  28. Hemphill, Jim: White Paper Dow Specialty Elastomers for Thermoplastic Polyolefin. Dow Chemical Company, Michigan (2009)

    Google Scholar 

  29. Jiri, G.D.: Handbook of Thermoplastic Elastomer, pp. 179–190. William Andrew Publishing, New York (2007). (Chapter 6)

    Google Scholar 

  30. Soares, B.G., Santos, D.M., Sirqueira, A.S.: A novel thermoplastic elastomer based on dynamically vulcanized polypropylene/acrylic rubber blends. eXPRESS Polym. Lett. 2, 602–613 (2008)

    Article  CAS  Google Scholar 

  31. Passador, F.R., Rodolfo, A., Pessan, L.A. : Dynamic vulcanization of PVC/NBR blends. In: Proceedings of the Polymer Processing Society 24th Annual Meeting, 2008

    Google Scholar 

  32. Ivan, G.: Dynamic vulcanization an accessible way to thermoplastic elastomers. Iran. J. Polym Sci. Technol. 2, 3–11 (1993)

    CAS  Google Scholar 

  33. Coran, A.Y., Patel, R., Williams, D.: Rubber-thermoplastic compositions Part V. Selecting polymers for thermoplastic vulcanizates. Rubber Chem. Technol. 55, 116–136 (1982)

    Article  CAS  Google Scholar 

  34. Lame, O.: Does fractal nanostructure of filled rubber lead to fractal deformations? In situ measurements of strain heterogeneities by AFM. Macromolecules 43(13), 5881–5887 (2010). doi:10.1021/ma100697v

    Google Scholar 

  35. Suphadon, N., Thomas, A.G., Busfield, J.J.C.: The viscoelastic behavior of rubber under a complex loading. II. The effect large strains and the incorporation of carbon black. J. Appl. Polym. Sci. 117, 1290–1297 (2010)

    CAS  Google Scholar 

  36. Stockelhuber, K.W., Das, A., Jurk, R., Heinrich, G.: Contribution of physico-chemical properties of interfaces on dispersibility, adhesion and flocculation of filler particles in rubber. Polymer 51, 1954–1963 (2010)

    Article  Google Scholar 

  37. Sosson, F., Belec, L., Chailan, J.-F., Carriere, P., Crespy, A.: Highlight of a compensation effect between filler morphology and loading on dynamic properties of filled rubbers. J. Appl. Polym. Sci. 117, 2715–2723 (2010)

    CAS  Google Scholar 

  38. Merabia, S., Sotta, P., Long, D.R.: Unique plastic and recovery behavior of nanofilled elastomers and thermoplastic elastomers (Payne and Mullins effects). J. Polym. Sci., Part B: Polym. Phys. 48, 1495–1508 (2010)

    Article  CAS  Google Scholar 

  39. Lewicki, J.P., Pielichowski, K., De La Croix, P.T., Janowski, B., Todd, D., Liggat, J.J.: Thermal degradation studies of polyurethane/POSS nanohybrid elastomers. Polym. Degrad. Stab. 95, 1099–1105 (2010)

    Article  CAS  Google Scholar 

  40. Kuila, T., Srivastava, S.K., Bhowmick, A.K.: Rubber/LDH nanocomposites by solution blending. J. Appl. Polym. Sci. 111, 635–641 (2009)

    Article  CAS  Google Scholar 

  41. Sun, J., Li, H., Song, Y., Zheng, Q., He, L., Yu, J.: Nonlinear stress relaxation of silica filled solution-polymerized styrene-butadiene rubber compounds. J. Appl. Polym. Sci. 112, 3569–3574 (2009)

    Article  CAS  Google Scholar 

  42. Serbescu, A., Saalwachter, K.: Particle-induced network formation in linear PDMS filled with silica. Polymer 50, 5434–5442 (2009)

    Article  CAS  Google Scholar 

  43. Wu, J.-H., Li, C.-H., Wu, Y.-T., Leu, M.-T., Tsai, Y.: Tsai, Thermal resistance and dynamic damping properties of poly (styrene-butadiene-styrene)/thermoplastic polyurethane composites elastomer material. Compos. Sci. Technol. 70, 1258–1264 (2010)

    Article  CAS  Google Scholar 

  44. Mathai, A.E., Thomas, S.: Morphology, mechanical and viscoelastic properties of nitrile rubber/Epoxidized natural rubber blends. J. Appl. Polym. Sci. 97, 1561–1573 (2005)

    Article  CAS  Google Scholar 

  45. Stephen, R., Raju, K.V.S.N., Nair, S.V., Varghese, S., Oommen, Z., Thomas, S.: Mechanical and viscoelastic behavior of natural rubber and carboxylated styrene-butadiene rubber latex blends. J. Appl. Polym. Sci. 88, 2639–2648 (2003)

    Article  CAS  Google Scholar 

  46. Tang, D., Qin, C., Cai, W., Zhao, L.: Preparation, morphology, and mechanical properties of modified-PU/UPR graft-IPN nanocomposites with BaTiO3 fiber. Mater. Chem. Phys. 82, 73–77 (2003)

    Article  CAS  Google Scholar 

  47. Guo, Q., Figueiredo, P., Thomann, R., Gronski, W.: Phase behavior, morphology and interfacial structure in thermoset/thermoplastic elastomer blends of poly(propylene glycol)-type epoxy resin and polystyrene-b-polybutadiene. Polymer 42, 10101–10110 (2001)

    Article  CAS  Google Scholar 

  48. Song, M., Hourston, D.J., Reading, M., Pollock, H.M., Hammiche, A.: Modulated differential scanning calorimetry: Analysis of interphases in multi-component polymer materials. J. Therm. Anal. Calorim. 56, 991–1004 (1999)

    Article  CAS  Google Scholar 

  49. Morton, M.: Elastomers, Synthetic. In: Kroschwitz, J. (ed.) Kirk-Othmer: Concise Encyclopedia of Chemical Technology, 4th edn, pp. 677–679. Wiley-Interscience, New York (1999)

    Google Scholar 

  50. Kumar, K.D., Tsou, A.H., Bhowmick, A.K.: Interplay between bulk viscoelasticity and surface energy in autohesive tack of rubber-tackifier blends. J. Polym. Sci., Part B: Polym. Phys. 48, 972–982 (2010)

    Article  CAS  Google Scholar 

  51. Meng, Q., Hu, J.: A review of shape memory polymer composites and blends. Compos. A Appl. Sci. Manuf. 40, 1661–1672 (2009)

    Article  Google Scholar 

  52. Ratna, D., Karger-Kocsis, J.: Recent advances in shape memory polymers and composites: a review. J. Mater. Sci. 43, 254–269 (2008)

    Article  CAS  Google Scholar 

  53. Liu, Y., Lv, H., Lan, X., Leng, J., Du, S.: Review of electro-active shape-memory polymer composite. Compos. Sci. Technol. 69, 2064–2068 (2009)

    Article  CAS  Google Scholar 

  54. Bagdi, K., Molnár, K., Sajo, I., Pukánszky, B.: Specific interactions, structure and properties in segmented polyurethane elastomers. eXPRESS Polym. Lett. 5, 417–427 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Shanks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shanks, R.A., Kong, I. (2013). General Purpose Elastomers: Structure, Chemistry, Physics and Performance. In: Visakh, P., Thomas, S., Chandra, A., Mathew, A. (eds) Advances in Elastomers I. Advanced Structured Materials, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20925-3_2

Download citation

Publish with us

Policies and ethics