Skip to main content
Log in

Non-Basic Solution Routes to Prepare ZnO Nanoparticles

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanocrystalline ZnO particles were prepared from alcoholic solutions of zinc acetate dihydrate without using base such as NaOH or LiOH through a colloid process carried out at a low temperature of 60°C. A comparative study of chemical reactions from zinc acetate dihydrate to ZnO was made using different types of monool solvents, i.e. methanol, ethanol, and 2-methoxyethanol. It was revealed that layered hydroxide zinc acetate was formed as an intermediate and its transformation into ZnO was a key reaction step in any of the solutions. Reaction time necessary for the precipitation of ZnO was greatly influenced by the solvents used. Methanol was useful for the preparation of the ZnO nanoparticles, which were chemically pure in terms of cation impurities and exhibited green photoluminescence by the ultraviolet excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Fendler (ed.), Nanoparticles and Nanostructured Films (Wiley-VCH, Weinheim, 1998).

    Google Scholar 

  2. M. Moffitt, L. McMahon, V. Pessel, and A. Eisenberg, Chem. Mater. 7, 1185 (1995).

    Google Scholar 

  3. T. Trindade and P. O'Brien, Adv. Mater. 8, 161 (1996).

    Google Scholar 

  4. Y. Yang, J.M. Huang, S.Y. Liu, and J.C. Shen, J. Mater. Chem. 7, 131 (1997).

    Google Scholar 

  5. L.X. Chen, T. Rajh, Z.Y. Wang, and M.C. Thurnauer, J. Phys. Chem. B 101, 10688 (1997).

    Google Scholar 

  6. C. Pascal, J.L. Pascal, F. Favier, M.L.E. Moubtassim, and C. Payen, Chem. Mater. 11, 141 (1999).

    Google Scholar 

  7. E.A. Meulenkamp, J. Phys. Chem. B 102, 5566 (1998).

    Google Scholar 

  8. K.S. Weiβenrieder and J. Müller, Thin Solid Films 300, 30 (1997).

    Google Scholar 

  9. M. Anpo, K. Chiba, M. Tomonari, S. Coluccia, M. Che, and M.A. Fox, B. Chem. Soc. Jpn. 64, 543 (1991).

    Google Scholar 

  10. C. Lorenz, A. Emmerling, J. Fricke, T. Schmidt, M. Hilgendorff, L. Spanhel, and G. Müller, J. Non-Cryst. Solids 238, 1 (1998).

    Google Scholar 

  11. H. Rensmo, K. Keis, H. Lindström, S. Södergren, A. Solbrand, A. Hagfeldt, S.E. Lindquist, L.N. Wang, and M. Muhammed, J. Phys. Chem. B 101, 2598 (1997).

    Google Scholar 

  12. I. Bedja, P.V. Kamat, X. Hua, A.G. Lappin, and S. Hotchandani, Langmuir 13, 2398 (1997).

    Google Scholar 

  13. K. Keis, J. Lindgren, S.E. Lindquist, and A. Hagfeldt, Langmuir 16, 4688 (2000).

    Google Scholar 

  14. T. Yoshida, K. Terada, D. Schlettwein, T. Oekermann, T. Sugiura, and H. Minoura, Adv. Mater. 12, 1214 (2000).

    Google Scholar 

  15. U. Koch, A. Fojtik, H. Weller, and A. Henglein, Chem. Phys. Lett. 122, 507 (1985).

    Google Scholar 

  16. D.W. Bahnemann, C. Kormann, and M.R. Hoffmann, J. Phys. Chem. 91, 3789 (1987).

    Google Scholar 

  17. L. Spanhel and M.A. Anderson, J. Am. Chem. Soc. 113, 2826 (1991).

    Google Scholar 

  18. P.V. Kamat and B. Patrick, J. Phys. Chem. 96, 6829 (1992).

    Google Scholar 

  19. S. Monticone, R. Tufeu, and A.V. Kanaev, J. Phys. Chem. B 102, 2854 (1998).

    Google Scholar 

  20. E.A. Meulenkamp, J. Phys. Chem. B 102, 7764 (1998).

    Google Scholar 

  21. E.M. Wong, J.E. Bonevich, and P.C. Searson, J. Phys. Chem. B 102, 7770 (1998).

    Google Scholar 

  22. S. Sakohara, M. Ishida, and M.A. Anderson, J. Phys. Chem. B 102, 10169 (1998).

    Google Scholar 

  23. Y. Inubushi, R. Takami, M. Iwasaki, H. Tada, and S. Ito, J. Colliod Interf. Sci. 200, 220 (1998).

    Google Scholar 

  24. B.S. Zou, V.V. Volkov, and Z.L. Wang, Chem. Mater. 11, 3073 (1999).

    Google Scholar 

  25. M.S. Tokumoto, S.H. Pulcinelli, C.V. Santilli, and A.F. Craievich, J. Non-Cryst. Solids 247, 176 (1999).

    Google Scholar 

  26. M.S. Tokumoto, S.H. Pulcinelli, C.V. Santilli, and V. Briois, J. Phys. Chem. B 107, 568 (2003).

    Google Scholar 

  27. Z. Hu, G. Oskam, and P.C. Searson, J. Colloid Interf. Sci. 263, 454 (2003).

    Google Scholar 

  28. S.A. Al-Baldawi and T.E. Gough, Can. J. Chem. 47, 1417 (1969).

    Google Scholar 

  29. S.A. Al-Baldawi, M.H. Brooker, T.E. Gough, and D.E. Irish, Can. J. Chem. 48, 1202 (1970).

    Google Scholar 

  30. P.J. Montoya-Pelaez and R.S. Brown, Inorg. Chem. 41, 309 (2002).

    Google Scholar 

  31. T. Schmidt, G. Müller, L. Spanhel, K. Kerkel, and A. Forchel, Chem. Mater. 10, 65 (1998).

    Google Scholar 

  32. E.D. Kolb and R.A. Laudise, J. Am. Ceram. Soc. 49, 302 (1966).

    Google Scholar 

  33. B.J. Pierce and R.L. Hengehold, J. Appl. Phys. 47, 644 (1976).

    Google Scholar 

  34. R.J. Kumar, Y. Diamant, and A. Gedanken, Chem. Mater. 12, 2301 (2000).

    Google Scholar 

  35. L. Poul, S. Ammar, N. Jouini, and F. Fiévet, J. Sol-Gel Sci. Tech. 26, 261 (2003).

    Google Scholar 

  36. G.W. Tindall, LCGC North Am. 20, 1028 (2002).

    Google Scholar 

  37. L. Poul, N. Jouini, and F. Fiévet, Chem. Mater. 12, 3123 (2000).

    Google Scholar 

  38. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, and J.A. Voigt, Appl. Phys. Lett. 68, 403 (1996).

    Google Scholar 

  39. W. Stählin and H.R. Oswald, Acta Cryst. B 26, 860 (1970).

    Google Scholar 

  40. B.J. Aylett, in Comprehensive Inorganic Chemistry, edited by J.C. Bailar, H.J. Emelēus, R. Nyholm, and A.F. Trotman-Dickenson (Pergamon, Oxford, 1973), p. 223.

    Google Scholar 

  41. H.R. Oswald and R. Asper, in Preparation and Crystal Growth of Materials with Layered Structures, edited by R.M.A. Lieth (D. Reidel, Dordrecht, 1977), p. 122.

    Google Scholar 

  42. M.K. Johnson, D.B. Powell, and R.D. Cannon, Spectrochim. Acta A 38, 125 (1982).

    Google Scholar 

  43. E. Hosono, S. Fujihara, T. Kimura, and H. Imai, J. Colloid Interf. Sci. 272, 391 (2004).

    Google Scholar 

  44. A.C. Pierre, Introduction to Sol-Gel Processing (Kluwer, Boston, 1998), p. 31.

    Google Scholar 

  45. S. Ahrland, in The Chemistry of Nonaqueous Solvents, Vol. VA, edited by L.L. Lagowski (Academic Press, New York, 1978), p. 10.

    Google Scholar 

  46. S. Yamabi and H. Imai, J. Mater. Chem. 12, 3773 (2002).

    Google Scholar 

  47. Y. Inada, H. Hayashi, K. Sugimoto, and S. Funahashi, J. Phys. Chem. A 103, 1401 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosono, E., Fujihara, S., Kimura, T. et al. Non-Basic Solution Routes to Prepare ZnO Nanoparticles. Journal of Sol-Gel Science and Technology 29, 71–79 (2004). https://doi.org/10.1023/B:JSST.0000023008.14883.1e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JSST.0000023008.14883.1e

Navigation