Skip to main content
Log in

The effect of precipitation conditions on the morpho-structural and optical properties of some zinc oxidic based compounds

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Despite the rapid development of a wide variety of materials, zinc oxidic based compounds remain important multifunctional materials. Optimization of synthesis parameters is an essential step in controlling the morpho-structural properties of nanomaterials. For example, preparation of high purity ZnO without additional calcination stage as well as achieving reproducible larger batches is still a great challenge of our days. In this study we report a simple synthesis route for ZnO nanoparticles at room temperature, without any additives and without additional calcination stages using diisopropylamine (DIA) as precipitating agent. The study is focused on changing the molar ratio, the volume and the flow rate of the reactants. Depending on the pH evolution, the phase composition can be controlled to form zinc oxide, zinc hydroxide or layered zinc acetate. Pure zinc oxide phase was obtained at pH ~8 with DIA excess at least of 3 mole. The changes of the morpho-structural and optical properties of samples were investigated by X-Ray diffraction, infrared spectroscopy, scanning electron microscopy, mineralogical optic microscopy, optical and photoluminescence spectroscopy. A better understanding of the crystalline phases formation was achieved using theoretical calculation (DFT) with a good match of the results with the experimental ones. Luminescent studies showed that the emission of ZnO is in green spectral domain at ~548 nm due to VO → VB transitions while the layered zinc acetate exhibits a much more complex blue emission at ~ 442 and 476 nm due to Zni contributions. The luminescent mechanism was proposed, in order to explain the luminescent behavior of samples.

Graphical Abstract

The pH evolution during the precipitation affects the morphology of the samples (layered, rounded aggregates). The blue or green luminescent emission is due to the presence of interstitial zinc (Zni) and oxygen vacancies (Vo) in layered zinc acetate or ZnO structures.

Highlights

  • ZnO, Zn(OH)2 and Zn5(OH)8(Ac)2∙4H2O were prepared by precipitation.

  • Preparative parameters were optimized for larger batches of ZnO.

  • The phase purity and structural parameters are affected by pH evolution.

  • Triangular, rounded, tetragonal bipyramid and lamellar structures were obtained.

  • Blue and green luminescence peaked at 442 and 550 nm is due to Zni and Vo defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kafle BP (2019) Chemical Analysis and Material Characterization by Spectrophotometry. Elsevier, ISBN 978-0-12-814866-2, 147. https://doi.org/10.1016/C2017-0-02426-6

  2. Zahoor R, Jalil A, Ilyas SZ, Ahmed S, Hassan A (2021) Optoelectronic and solar cell applications of ZnO nanostructures. Results Surf Interfaces 2:100003. https://doi.org/10.1016/j.rsurfi.2021.100003

    Article  Google Scholar 

  3. Baro B, Khimhun S, Das U, Bayan S (2023) ZnO based triboelectric nanogenerator on textile platform for wearable sweat sensing application. Nano Energy 108:108212. https://doi.org/10.1016/j.nanoen.2023.108212

    Article  CAS  Google Scholar 

  4. Zhang L, Shi C, Lu H, Li H, Zhou X, Wang Z, Ma J (2022) Porous cellulose gel-regulated flower-like ZnO-Cu nanoparticles for enhancing interfacial catalysis activity and recyclability in environmental catalysis. Appl Surf Sci 597:153737. https://doi.org/10.1016/j.apsusc.2022.153737

    Article  CAS  Google Scholar 

  5. Yadav A, Mondal K, Gupta A (2022) Metal Oxides for Biomedical and Biosensor Applications. Elsevier, Idaho Falls, United States, p 407. Kunal Mondal ed,

    Google Scholar 

  6. Verma R, Pathak S, Srivastava AK, Prawer S, Tomljenovic-Hanic S (2021) ZnO nanomaterials: Green synthesis, toxicity evaluation and new insights in biomedical applications. J Alloy Compd 876:160175. https://doi.org/10.1016/j.jallcom.2021.160175

    Article  CAS  Google Scholar 

  7. Jiang Z, Liu B, Yu L, Tong Y, Yan M, Zhang R, Han W, Hao Y, Shangguan L, Zhang S, Li W (2023) Research progresses in preparation methods and applications of zinc oxide nanoparticles. J Alloy Compd 956:170316. https://doi.org/10.1016/j.jallcom.2023.170316

    Article  CAS  Google Scholar 

  8. Singh P, Singh RK, Kumar R (2021) Journey of ZnO quantum dots from undoped to rare-earth and transition metal-doped and their applications. RSC Adv 11:2512–2545. https://doi.org/10.1039/d0ra08670c

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rajan S, Venugopal A, Kozhikkalathil H, Valappil S, Kale M, Mann M, Ahuja P, Munjal S (2023) Synthesis of ZnO nanoparticles by precipitation method: Characterizations and applications in decipherment of latent fingerprints. Mater Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.05.680

  10. Majid F, Bashir M, Bibi I, Raza A, Ezzine S, Alwadai N, Iqbal M (2022) ZnO nanofibers fabrication by hydrothermal route and effect of reaction time on dielectric, structural and optical properties. J Mater Res Technol 18:4019–4029. https://doi.org/10.1016/j.jmrt.2022.04.001

    Article  CAS  Google Scholar 

  11. Al-luhaibi AA, Sendi RK (2022) Synthesis, potential of hydrogen activity, biological and chemical stability of zinc oxide nanoparticle preparation by sol–gel: A review. J Radiat Res Appl Sci 15:38–254. https://doi.org/10.1016/j.jrras.2022.07.008

    Article  CAS  Google Scholar 

  12. Shu Y, Duan X, Niu Q, Xie R, Zhang P, Pan Y, Ma Z (2021) Mechanochemical Alkali-Metal-Salt-mediated synthesis of ZnO nanocrystals with abundant oxygen Vacancies: An efficient support for Pd-based catalyst. Chem Eng J 426:131757. https://doi.org/10.1016/j.cej.2021.131757

    Article  CAS  Google Scholar 

  13. Kem A, Pasupuleti KS, Jayasimhadri M, Kim MD, Peta KR (2023) Core shell heterojunction interface in green synthesized Sm3+ ions doped ZnO nano-particles to promote the charge separation for efficient photocatalytic applications. J Alloy Compd 960:170841. https://doi.org/10.1016/j.jallcom.2023.170841

    Article  CAS  Google Scholar 

  14. Król A, Pomastowski P, Rafińska K, Railean-Plugaru V, Buszewski B (2017) Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv Colloid Interface Sci 249:37–52. https://doi.org/10.1016/j.cis.2017.07.033

    Article  CAS  PubMed  Google Scholar 

  15. Adama RE, Pozinab G, Willandera M, Nura O (2018) Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH. Photonics Nanostruct – Fundam Appl 32:11–18. https://doi.org/10.1016/j.photonics.2018.08.005

    Article  ADS  Google Scholar 

  16. Verma RK, Nagar V, Aseri V, Mavry B, Pandit PP, Chopade RL, Singh A, Singh A, Yadav VK, Pandey K, Sankhla MS (2022) Zinc oxide (ZnO) nanoparticles: Synthesis properties and their forensic applications in latent fingerprints development. Mater Today: Proc 69:36–41. https://doi.org/10.1016/j.matpr.2022.08.074

    Article  CAS  Google Scholar 

  17. Goswami M, Adhikary NC, Bhattacharjee S (2018) Effect of annealing temperatures on the structural and optical properties of zinc oxide nanoparticles prepared by chemical precipitation method. Optik 158:1006–1015. https://doi.org/10.1016/j.ijleo.2017.12.174

    Article  ADS  CAS  Google Scholar 

  18. Kubiak A, Żółtowska S, Gabała E, Szybowicz M, Siwińska-Ciesielczyk K, Jesionowski T (2021) Controlled microwave-assisted and pH-affected growth of ZnO structures and their photocatalytic performance. Powder Technol 386:221–235. https://doi.org/10.1016/j.powtec.2021.03.051

    Article  CAS  Google Scholar 

  19. Lal M, Sharma P, Singh L, Ram C (2023) Photocatalytic degradation of hazardous Rhodamine B dye using sol-gel mediated ultrasonic hydrothermal synthesized of ZnO, nanoparticles. Results Eng 17:100890. https://doi.org/10.1016/j.rineng.2023.100890

    Article  CAS  Google Scholar 

  20. Liu L, Wang S, Liu W, Wang J, Zhang B, Yang J, Liu H, Li Y (2023) Supercritical hydrothermal synthesis of nano-ZnO: Effects of key parameters and reaction mechanism. Ceram Int 49:31313–3132. https://doi.org/10.1016/j.ceramint.2023.07.079

    Article  CAS  Google Scholar 

  21. Ungula J, Dejene BF, Swart HC (2018) Effect of pH on the structural, optical and morphological properties of Ga-doped ZnO nanoparticles by reflux precipitation method. Phys B 535:251–257. https://doi.org/10.1016/j.physb.2017.07.052

    Article  ADS  CAS  Google Scholar 

  22. Rezaei A, Katoueizadeh E, Zebarjad SM (2022) Investigation of the parameters affecting the morphology of zinc oxide (ZnO) nanoparticles synthesized by precipitation method. Mater Today Chem 26:101239. https://doi.org/10.1016/j.mtchem.2022.101239

    Article  CAS  Google Scholar 

  23. Belcovici A, Fort CI, Mureşan LE, Perhaiţa I, Borodi G, Turdean GL (2023) Zinc oxide nanostructured platform for electrochemical detection of heavy metals. Electroanalysis 35:202200395. https://doi.org/10.1002/elan.202200395

    Article  CAS  Google Scholar 

  24. Perdew JP, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77(18):3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92(17):508. https://doi.org/10.1063/1.458452

    Article  ADS  CAS  Google Scholar 

  26. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132. https://doi.org/10.1063/1.3382344

  27. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113(64):7756. https://doi.org/10.1063/1.1316015

    Article  ADS  CAS  Google Scholar 

  28. Dassault Systèmes BIOVIA (2017) Materials Studio, San Diego

  29. Alias SS, Ismail AB, Mohamad AA (2010) Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. J Alloy Compd 499:231–237. https://doi.org/10.1016/j.jallcom.2010.03.174

    Article  CAS  Google Scholar 

  30. Samaele N, Amornpitoksuk P, Suwanboon S (2010) Effect of pH on the morphology and optical properties of modified ZnO particles by SDS via a precipitation method. Powder Technol 203:243–247. https://doi.org/10.1016/j.powtec.2010.05.014

    Article  CAS  Google Scholar 

  31. Hosono E, Fujihara S, Kimura T, Imai H (2004) Growth of layered basic zinc acetate in methanolic solutions and its pyrolytic transformation into porous zinc oxide films. J Colloid Interface Sci 272:391–398. https://doi.org/10.1016/j.jcis.2003.10.005

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Biswick T, Jones W, Pacula A, Serwicka E, Podobinski J (2009) Evidence for the formation of anhydrous zinc acetate and acetic anhydride during the thermal degradation of zinc hydroxy acetate, Zn5(OH)8(CH3CO2)2x4H2O to ZnO. Solid State Sci 11:330–335. https://doi.org/10.1016/j.solidstatesciences.2008.06.018

    Article  ADS  CAS  Google Scholar 

  33. Snyde RL (1992) The Use of Reference Intensity Ratios in X-Ray Quantitative Analysis. Powder Diffr 7(4):186–193. https://doi.org/10.1017/S0885715600018686

    Article  ADS  Google Scholar 

  34. Music S, Dragcevic D, Popovic S (2007) Influence of synthesis route on the formation of ZnO particles and their morphologies. J Alloy Compd 429:242–249. https://doi.org/10.1016/j.jallcom.2006.03.084

    Article  CAS  Google Scholar 

  35. Stahlin W, Oswald HR (1970) The Crystal Structure of Zinc Hydroxide Nitrate, Zn5(OH)8(NO3)2.2H2O. Acta Cryst B26:860. https://doi.org/10.1107/S0567740870003230

    Article  Google Scholar 

  36. Ghotbi MY (2010) Synthesis and characterization of nano-sized ε-Zn(OH)2 and its decomposed product, nano-zinc oxide. J Alloy Compd 491:420–422. https://doi.org/10.1016/j.jallcom.2009.10.214

    Article  CAS  Google Scholar 

  37. Saroj SK, Pal S, Nagarajan R (2020) Polyol intercalation in copper substituted zinc hydroxide acetate and evaluation of its adsorptive role towards Congo red dye. Appl Clay Sci 185:105411. https://doi.org/10.1016/j.clay.2019.105411

    Article  CAS  Google Scholar 

  38. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater 1(1):011002

    Article  ADS  Google Scholar 

  39. He Y, Li H, Qian W, Wu Y (2023) High-resolution light field imaging based on liquid crytal microlens arrays with ZnO microstructure orientation. Opt Lasers Eng 162:107424. https://doi.org/10.1016/j.optlaseng.2022.107424

    Article  Google Scholar 

  40. Yu G, Cheng Y (2020) Effects of Inorganic ZnO Particle Doping on Crystalline Polymer Morphology and Space Charge Behavior. Coatings 10:932. https://doi.org/10.3390/coatings10100932

    Article  CAS  Google Scholar 

  41. Dombrowski RT (2013) Microscopy techniques for analyzing the phase nature and morphology of biomaterials. Jaffe M, Hammond W, Tolias P, Arinzeh T, ed, Woodhead Publishing Series in Biomaterials. 1-33. https://doi.org/10.1533/9780857093684.1

  42. Escobedo-Morales A, Ruiz-Lopez II, deL Ruiz-Peralta M, Tepech-Carrillo L, Sanchez-Cantu M, Moreno-Orea JE (2019) Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy. Heliyon 5:e01505. https://doi.org/10.1016/j.heliyon.2019.e01505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Islam SMZ, Gayen T, Moussawi A, Shi L, Seredych M, Bandosz TJ, Alfano R (2013) Structural and optical characterization of Zn(OH)2 and its composites with graphite oxides. Opt Lett 38(6):962–964. https://doi.org/10.1364/OL.38.000962

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Kamarulzaman N, Kasim MF, Rusdi R (2015) Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials. Nanoscale Res Lett 10:346. https://doi.org/10.1186/s11671-015-1034-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang J, Chen R, Xiang L, Komarnenic S (2018) Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review. Ceram Int 44:7357–7377. https://doi.org/10.1016/j.ceramint.2018.02.013

    Article  CAS  Google Scholar 

  46. Gurylev V, Perng TP (2021) Defect engineering of ZnO: Review on oxygen and zinc vacancies. J Eur Ceram 41:4977–4996. https://doi.org/10.1016/j.jeurceramsoc.2021.03.031

    Article  CAS  Google Scholar 

  47. Banerjee D, Kar AK (2019) Effect of hydroxide ion concentration on the evolution of nanostructures and structure correlated luminescence of ZnO nanopowders. Opt Mater 89:430–440. https://doi.org/10.1016/j.optmat.2019.01.048

    Article  ADS  CAS  Google Scholar 

  48. Quites FJ, Germino JC, Atvars TDZ (2014) Improvement in the emission properties of a luminescent anionic dye intercalated between the lamellae of zinc hydroxide-layered. Colloids Surf A Physicochem Eng Asp 459:194–201. https://doi.org/10.1016/j.colsurfa.2014.07.009

    Article  CAS  Google Scholar 

  49. Nadupalli S, Repp S, Weber S, Erdem E (2021) About defect phenomena in ZnO nanocrystals. Nanoscale 13:9160–9171. https://doi.org/10.1039/d1nr00943e

    Article  CAS  PubMed  Google Scholar 

  50. Ellmer K, Bikowski A (2016) Intrinsic and extrinsic doping of ZnO and ZnO alloys. J Phys D: Appl Phys 49:413002. https://doi.org/10.1088/0022-3727/49/41/413002

    Article  CAS  Google Scholar 

  51. Zhang SB, Wei SH, Zunger A (2001) Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys Rev B 63:075205. https://doi.org/10.1103/PhysRevB.63.075205

    Article  ADS  CAS  Google Scholar 

  52. Rai H, Prashant M, Kondal N (2022) A review on defect related emissions in undoped ZnO nanostructures. Mater Today: Proc 48:1320–1324. https://doi.org/10.1016/j.matpr.2021.08.343

    Article  CAS  Google Scholar 

  53. Lv J, Li C, Chai Z (2019) Defect luminescence and its mediated physical properties in ZnO. J Lumin 208:225–23,. https://doi.org/10.1016/j.jlumin.2018.12.050

    Article  CAS  Google Scholar 

  54. Lv J, Fang M (2018) Photoluminescence study of interstitial oxygen defects in ZnO nanostructures. Mater Lett 218:18–21. https://doi.org/10.1016/j.matlet.2018.01.137

    Article  CAS  Google Scholar 

  55. Gong Y, Andelman T, Neumark GF, O’Brien S, Kuskovsky IL (2007) Origin of defect-related green emission from ZnO nanoparticles: effect of surface modification. Nanoscale Res Lett 2:297–302. https://doi.org/10.1007/s11671-007-9064-6

    Article  ADS  CAS  PubMed Central  Google Scholar 

  56. Brahma S, Shivashankar SA (2016) Yellow–red luminescence in ZnO nanoparticles synthesized from zinc acetylacetonate phenanthroline. Mater Lett 164:235–238. https://doi.org/10.1016/j.matlet.2015.10.147

    Article  CAS  Google Scholar 

  57. García-Velasco AC, Baez-Rodríguez A, Bizarro M, Calderon-Olvera RM, Hernandez-Torres J, García-Gonzalez L, Zamora-Peredo L (2022) Surface defect-rich ZnO nanostructures with high yellow-orange luminescence. J Lumin 25:119187. https://doi.org/10.1016/j.jlumin.2022.119187

    Article  CAS  Google Scholar 

  58. Raoufi D (2013) Synthesis and photoluminescence characterization of ZnO nanoparticles. J Lumin 134:213–219. https://doi.org/10.1016/j.jlumin.2012.08.045

    Article  CAS  Google Scholar 

Download references

Authors contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by L.E. Muresan, I. Perhaita, A. M. V. Branzanic, C. Sarosi, L. Barbu-Tudoran, G. Borodi, I. Petean. The first draft of the manuscript was written by L.E. Muresan and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by a grant of the Ministry of Research, Innovation and Digitization, CCCDI - UEFISCDI, project number PN-III-P2-2.1-PED-2021-2421, within PNCDI III and from the Romanian Ministry of Education and Research, PN-III-P1-1.1- PD-2021-0279 is gratefully acknowledged. The maintenance for the diffractometer was supported by the Ministry of Research, Innovation, and Digitization through Programme 1-Development of the National Research and Development System, Subprogramme 1.2-Institutional Performance-Funding Projects for Excellence in RDI, Contract No. 37PFE/30.12.2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Mureşan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mureşan, L.E., Perhaița, I., Brânzanic, A.M.V. et al. The effect of precipitation conditions on the morpho-structural and optical properties of some zinc oxidic based compounds. J Sol-Gel Sci Technol 109, 795–809 (2024). https://doi.org/10.1007/s10971-024-06313-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-024-06313-z

Keywords

Navigation