Skip to main content
Log in

Rapid synthesis of zinc oxide nanoparticles from an alkaline zinc solution via direct precipitation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to describe a novel method for producing zinc oxide (ZnO). Within only 10 min of the synthesis procedure, ZnO nanoparticles were precipitated directly from a sodium zincate after partial neutralization with sulfuric acid. The entire synthesis process was carried out at room temperature. There were no additives or additional operations, such as calcination, required in the proposed method. XRD, FESEM, and BET techniques were used to characterize the product, and XRD confirmed the formation of crystalline ZnO devoid of other phases. Consideration of the height of XRD peaks revealed that ZnO crystallites grow preferentially along the c-axis. FESEM revealed particles with a diameter of 30–50 nm which was also confirmed by analysis of the broadening of XRD peaks. Nearly spherical particles were observed by the FESEM. These nanospheres were primarily adhered together to form platelets. Finally, the BET analysis revealed a substantial specific surface area of 20 mg− 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors confirm that the data that support the study’s findings are included in the article. Additional information is available upon reasonable request from the corresponding author.

Code availability

Visual MINTEQ is free software and is available at https://vminteq.lwr.kth.se/.

References

  1. A.S. Lanje, S.J. Sharma, R.S. Ningthoujam, J.-S. Ahn, R.B. Pode, Adv. Powder Technol. 24, 331 (2013)

    Article  CAS  Google Scholar 

  2. D. Piva, R. Piva, M. Rocha, J. Dias, O. Montedo, I. Malavazi, M. Morelli, Adv. Powder Technol. 28, 463 (2017)

    Article  CAS  Google Scholar 

  3. A.K. Babaheydari, M. Salavati-Niasari, A. Khansari, Particuology 10, 759 (2012)

    Article  CAS  Google Scholar 

  4. M. Goudarzi, M. Mousavi-Kamazani, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 28, 8423 (2017)

    CAS  Google Scholar 

  5. S. Mukhopadhyay, P.P. Das, S. Maity, P. Ghosh, P.S. Devi, Appl. Catal. B 165, 128 (2015)

    Article  CAS  Google Scholar 

  6. S. Swathi, E.S. Babu, R. Yuvakkumar, G. Ravi, A. Chinnathambi, S.A. Alharbi, D. Velauthapillai, Ceram. Int. 47, 9785 (2021)

    Article  CAS  Google Scholar 

  7. A. Mohammadzadeh, M. Azadbeh, B. Shokriyan, S.N.K. Abad, Ceram. Int. 46, 2552 (2020)

    Article  CAS  Google Scholar 

  8. S. Agarwal, P. Rai, E.N. Gatell, E. Llobet, F. Güell, M. Kumar, K. Awasthi, Sens. Actuators B 292, 24 (2019)

    Article  CAS  Google Scholar 

  9. S. Arya, P. Mahajan, S. Mahajan, A. Khosla, R. Datt, V. Gupta, S.-J. Young, S.K. Oruganti, ECS J. Solid State Sci. Technol. 10, 023002 (2021)

    Article  CAS  Google Scholar 

  10. Y. Bao, L. Gao, C. Feng, J. Ma, S. Lyu, Mater. Sci. Eng. B 263, 114887 (2021)

    Article  CAS  Google Scholar 

  11. M. Yousefi, E. Noori, D. Ghanbari, M. Salavati-Niasari, T. Gholami, J. Clust. Sci. 25, 397 (2014)

    Article  CAS  Google Scholar 

  12. S. Moshtaghi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 27, 834 (2016)

    CAS  Google Scholar 

  13. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, J. Mol. Liq. 231, 306 (2017)

    Article  CAS  Google Scholar 

  14. S. Zinatloo-Ajabshir, M.S. Morassaei, O. Amiri, M. Salavati-Niasari, L.K. Foong, Ceram. Int. 46, 17186 (2020)

    Article  CAS  Google Scholar 

  15. A. Moezzi, M.B. Cortie, A.M. McDonagh, Dalton Trans. 42, 14432 (2013)

    Article  CAS  Google Scholar 

  16. A. Moezzi, M. Cortie, A. Dowd, A. McDonagh, J. Nanopart. Res. 16, 1 (2014)

    Article  Google Scholar 

  17. C.K. Srikanth, P. Jeevanandam, J. Alloy. Compd. 486, 677 (2009)

    Article  CAS  Google Scholar 

  18. M. Wang, Y. Zhou, Y. Zhang, S.H. Hahn, E.J. Kim, CrystEngComm 13, 6024 (2011)

    Article  CAS  Google Scholar 

  19. J. Xie, P. Li, Y. Wang, Y. Wei, Phys. Status Solidi A 205, 1560 (2008)

    Article  CAS  Google Scholar 

  20. J. Xie, P. Li, Y. Li, Y. Wang, Y. Wei, Mater. Chem. Phys. 114, 943 (2009)

    Article  CAS  Google Scholar 

  21. J. Wang, L. Xiang, J. Cryst. Growth 401, 279 (2014)

    Article  CAS  Google Scholar 

  22. P. Li, H. Liu, F. Xu, Y. Wei, Mater. Chem. Phys. 112, 393 (2008)

    Article  CAS  Google Scholar 

  23. M.-H. Wang, F. Zhou, B. Zhang, C. Yao, J. Alloys Compd. 581, 308 (2013)

    Article  CAS  Google Scholar 

  24. A.M. Pourrahimi, D. Liu, L.K. Pallon, R.L. Andersson, A.M. Abad, J.-M. Lagarón, M.S. Hedenqvist, V. Ström, U.W. Gedde, R.T. Olsson, RSC Adv. 4, 35568 (2014)

    Article  CAS  Google Scholar 

  25. S. Sepulveda-Guzman, B. Reeja-Jayan, E. de La Rosa, A. Torres-Castro, V. Gonzalez-Gonzalez, M. Jose-Yacaman, Mater. Chem. Phys. 115, 172 (2009)

    Article  CAS  Google Scholar 

  26. M. Aghazadeh Ghomi, J. Moghaddam, N. Parvini, Ahmadi, Trans. Indian Inst. Met. 70, 1697 (2017)

    Article  CAS  Google Scholar 

  27. M.A. Ghomi, J. Moghaddam, N.P. Ahmadi, Rare Met. 39, 1341 (2020)

    Article  Google Scholar 

  28. P. Perillo, M. Atia, D. Rodríguez, Physica E 85, 185 (2017)

    Article  CAS  Google Scholar 

  29. S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Ind. Eng. Chem. 20, 3313 (2014)

    Article  CAS  Google Scholar 

  30. S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 26, 5812 (2015)

    CAS  Google Scholar 

  31. J. Wang, P. Ma, L. Xiang, Mater. Lett. 141, 118 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

This research received no specific funding from public, commercial, or not-for-profit funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

MA-G was responsible for conceptualization, methodology, formal analysis, resource provision, data curation, writing—original draft, and project administration. ZP: performing the experiments. Each author has contributed significantly to the paper's development and will accept public responsibility for its content.

Corresponding author

Correspondence to Mostafa Aghazadeh-Ghomi.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication.

Consent to participate

This research is not related to human subjects.

Consent for publication

The author assigns non-exclusive publication rights to Springer and warrants that his contribution is unique and that he possesses all necessary authority to make this grant. The author assumes responsibility for the material’s release on behalf of all co-authors. This assignment of publication rights includes the non-exclusive right to reproduce and distribute the article in any format, including reprints, translations, photographic reproductions, microform, electronic form (offline, online), or other reproductions of a similar nature.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghazadeh-Ghomi, M., Pourabbas, Z. Rapid synthesis of zinc oxide nanoparticles from an alkaline zinc solution via direct precipitation. J Mater Sci: Mater Electron 32, 24363–24368 (2021). https://doi.org/10.1007/s10854-021-06907-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06907-1

Navigation