Skip to main content
Log in

Probing Inhomogeneities in Type II Superconductors by Means of Thermal Fluctuations, Magnetic Fields, and Isotope Effects

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Type II superconductors, consisting of superconducting domains embedded in a normal or insulating matrix, undergo a rounded phase transition. Indeed, the correlation length cannot grow beyond the spatial extent of the domains. Accordingly, the thermodynamic properties will exhibit a finite size effect. It is shown that the specific heat and penetration depth data of a variety of type II superconductors, including cuprates, exhibit the characteristic properties of a finite size effect, arising from domains with nanoscale extent. The finite size scaling analysis reveals essential features of the mechanism. Transition temperature and superfluidity increase with reduced domain size. The combined finite size and isotope effects uncover the relevance of local lattice distortions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Bednorz and K. A. Muller, Z. Phys. B 64 189 (1986).

    Google Scholar 

  2. J. Mesot, P. Allensbach, U. Staub, and A. Furrer, Phys. Rev. Lett. 70 865 (1993).

    PubMed  Google Scholar 

  3. A. Furrer, P. Allensbach, M. Guillaume, W. Henggeler, J. Mest, and S. Rosenkranz, Physica C 235–240 261 (1994).

    Google Scholar 

  4. J. Liu, J. Wan, A. Goldman, Y. Chang, and P. Jiang, Phys. Rev. Lett. 67 2195 (1991).

    PubMed  Google Scholar 

  5. A. Chang, Z. Rong, Y. Ivanchenko, F. Lu, and E. Wolf, Phys. Rev. B 46 5692 (1992).

    Google Scholar 

  6. T. Cren, D. Roditchev, W. Sacks, J. Klein, J.-B. Moussy, C. Deville-Cavellin, and M. Laguës, Phys. Rev. Lett. 84 147 (2000).

    PubMed  Google Scholar 

  7. K. M. Lang, V. Madhavan, J. E. Hoffman, E. W. Hudson, H. Eisaki, S. Uchida, and J. C. Davis, Nature 415 413 (2002).

    Google Scholar 

  8. C. Renner and ⊘. Fischer, Phys. Rev. B 51 9208 (1995).

    Google Scholar 

  9. T. Schneider, cond-mat/0210702 (unpublished).

  10. T. Schneider, R. Khasanov, K. Conder, and H. Keller, J. Phys. Condens. Matter, 15 L763 (2003).

    Google Scholar 

  11. M. E. Fisher, in Critical Phenomena, Proceedings of the 1970 International School of Physics Enrico Fermi, Course 51, M. S. Green, ed. (Academic Press, New York, 1971), p. 1.

    Google Scholar 

  12. T. Schneider and J. M. Singer, Phase Transition Approach to High Temperature Superconductivity (Imperial College Press, London, 2000), p. 186.

    Google Scholar 

  13. A. Peliasetto and E. Vicari, cond/mat/0012164 (unpublished).

  14. M. Roulin, A. Junod, and E. Walker, Physica C 296 137 (1998).

    Google Scholar 

  15. A. Mirmelstein, A. Junod, E. Walker, B. Revaz, Y.-Y. Genoud, and G. Triscone, J. Supercond. 10 527 (1997).

    Google Scholar 

  16. D. Sanchez, A. Junod, J. Muller, H. Berger, and F. Levy, Physica B 204 167 (1995).

    Google Scholar 

  17. L. Lyard et al., cond-mat/020623 (unpublished).

  18. B. Janossy, D. Prost, S. Pekker, and L. Fruchter, Physica C 181 91 (1991).

    Google Scholar 

  19. S. Blanchard, C. Marcenat, J. Marcus, T. Klein, and A. Sulpice, Physica C 369 193 (2002).

    Google Scholar 

  20. A. Carrington, C. Marcenat, F. Bouquet, D. Colson, A. Bertinotti, J. F. Marucco, and J. Hammann, Phys. Rev. B55 8674 (1997).

    Google Scholar 

  21. T. Schneider and J. M. Singer, Physica C 341–348 87 (2000).

    Google Scholar 

  22. A. Junod, A. Erb, and C. Renner, Physica C 317/318 333 (1999).

    Google Scholar 

  23. A. Mirmelstein, A. Junod, G. Triscone, K.-Q. Wang, and J. Muller, Physica C 248 335 (1995).

    Google Scholar 

  24. A. Junod et al., Physica C 229 209 (1994).

    Google Scholar 

  25. P. C. Hohenberg, A. Aharony, B. I. Halperin, and E. P. Siggia, Phys. Rev. B 13 2986 (1976).

    Google Scholar 

  26. T. Jacobs, S. Sridhar, Q. Li, G. D. Gu, and N. Koshizuka, Phys. Rev. Lett. 75 4516 (1995).

    PubMed  Google Scholar 

  27. S. F. Lee et al., Phys. Rev. Lett. 71 3862 (1993).

    PubMed  Google Scholar 

  28. K. D. Osborn, D. J. Van Harlingen, Vivek Aji, N. Goldenfeld, S. Oh, and J. N. Eckstein, cond-mat/0204417.

  29. R. Khasanov et al., J. Phys. Condensed Matter 15 L17 (2003).

    Google Scholar 

  30. K. Conder et al., in Phase Separation in Cuprate Superconductors, E. Sigmund and K. A. Muller, eds. (Springer, Berling, 1994), p. 210.

    Google Scholar 

  31. F. Raffa, T. Ohno, M. Mali, J. Roos, D. Brinkmann, K. Conder, and M. Eremin, Phys. Rev. Lett. 81 5912 (1998).

    Google Scholar 

  32. J.-H. Chung et al., Phys. Rev. B 67 014517 (2003).

    Google Scholar 

  33. T. Schneider, Phys. Rev. B 67 134514 (2003).

    Google Scholar 

  34. T. Schneider, Europhys. Lett. 60 141 (2002).

    Google Scholar 

  35. T. Schneider, Physica B 326 289 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, T. Probing Inhomogeneities in Type II Superconductors by Means of Thermal Fluctuations, Magnetic Fields, and Isotope Effects. Journal of Superconductivity 17, 41–48 (2004). https://doi.org/10.1023/B:JOSC.0000011838.70984.4b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSC.0000011838.70984.4b

Navigation