Skip to main content
Log in

Acid Metallophosphatase from the Ameba Amoeba proteus

  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Tartrate-resistant acid phosphatase (TR-AcPh) from the ameba Amoeba proteus is represented by 3 bands (electromorphs) revealed after disk-electrophoresis in PAAG, using 2-naphthylphosphate as substrate. The presence of 50 mmol/l MgCl2 or CaCl2 in the incubation mixture increases activities of all electromorphs of TR-AcPh, while of ZnCl2, of two of them. The activity of the TR-AcPh electromorphs also rose after the 30-min incubation of the gels in MgCl2, CaCl2 or ZnCl2 (10 and 100 mM) before gel staining. However, 1 M ZnCl2, unlike 1 M CaCl2 or 1 M MgCl2, partly inactivated two out of three TR-AcPh electromorphs. The TR-AcPh electromorphs were inhibited by 1,10-phenanthroline (1,10-Ph), EDTA, and EGTA (all at a concentration of 5 mM) faster than by H2O2 (10 mM). The inactivation of the TR-AcPh electromorphs by the chelating agents did not depend (EGTA) or nearly did not depend (EDTA, 1,10-Ph) on their concentration (0.05, 0.5, and 5 mM). Out of 5 tested ions (Mg2+, Ca2+, Fe2+, Fe3+, and Zn2+), only Zn ions reactivated the TR-AcPh electromorphs inactivated by 1,10-Ph, EDTA or EGTA. The TR-AcPh electromorphs were reactivated worse after inactivation by EGTA than by EDTA or 1,10-Ph. It is suggested that the active site of TR-AcPh contains the zinc ion essential for catalytic activity of this enzyme, i.e., TR-AcPh of A. proteus is a metallophosphatase performing the phosphomonoesterase activity in acidic medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lovelace, L., Lewinski, K., Jacob, C.G., Kuciel, R., Ostrowski, W., and Lebioda, Ł., Prostatic Acid Phosphatase: Structural Aspects of Inhibition by L-(+)-Tartrate Ions, Acta Biochim. Polon., 1997, vol. 44, pp. 673-678.

    Google Scholar 

  2. Stone, R.L. and Dixon, J.E., Protein-Tyrosine Phosphatases, J. Biol. Chem., 1994, vol. 269, pp. 31 323-31 326.

    Google Scholar 

  3. Barford, D., Das, A.K., and Egloff, M.P., The Structure and Mechanism of Protein Phosphatases: Insights into Catalysis and Regulation, Ann. Rev. Biophys. Biomol. Struct., 1998, vol. 27, pp. 133-164.

    Google Scholar 

  4. Selengut, J.D. and Levine, R.L., MDP-1: A Novel Eukaryotic Magnesium-Dependent Phosphatase, Biochemistry, 2000, vol. 39, pp. 8315-8324.

    Google Scholar 

  5. Friz, C.F., Taxonomic Analyses of Seven Species of Family Amoebidae by Isozymic Characterization of Electrophoretic Patterns and the Descriptions of a New Genus and a New Species: Metamoeba n. gen. Amoeba amazonas n. sp., Arch. Protistenk., 1992, vol. 142, pp. 29-40.

    Google Scholar 

  6. Sopina, V.A., Acid Phosphatase in Ameba Amoeba proteus, Tsitologiya, 1998, vol. 40, pp. 980-990.

    Google Scholar 

  7. Sopina, V.A. and Belyaeva, T.N., Tartrate-Sensitive and Tartrate-Resistant Acid Phosphatases in the Ameba Amoeba proteus, Tsitologiya, 2000, vol. 42, pp. 602-612.

    Google Scholar 

  8. Sopina, V.A., The Electrophoretic Patterns of Glucose-6-Phosphate, 6-Phosphogluconate and Glucose Dehydrogenases in Amoeba proteus (Pallas, 1766) Leidy, 1878 Cultured at Different Temperature, Comp. Biochem. Physiol., 1991, vol. 100B, pp. 605-615.

    Google Scholar 

  9. Sopina, V.A., Activity and Thermostability of Acid Phosphatase in Homogenates of the Ameba Amoeba proteus Acclimated to Various Temperatures, Tsitologiya, 2001, vol. 43, pp. 701-707.

    Google Scholar 

  10. MacKintosh, C. and MacKintosh, R.W., Inhibitors of Protein Kinases and Phosphatases, TIBS, 1994, vol. 19, pp. 444-448.

    Google Scholar 

  11. Arnold, W.N. and Garrison, R.G., An Fe3+-Activated Acid Phosphatase in Saccharomyces rouxii, J. Biol. Chem., 1979, vol. 254, pp. 4919-4924.

    Google Scholar 

  12. Szalewicz, A., Radomska, B., Strzelczyk, B., and Kubicz, A., A Novel 35 kDa Frog Liver Acid Metallo-phosphatase, Biochim. Biophys. Acta, 1999, vol. 1431, pp. 199-211.

    Google Scholar 

  13. Fauman, E.B. and Saper, M.A., Structure and Function of the Protein Tyrosine Phosphatases, TIBS, 1996, vol. 21, pp. 413-417.

    Google Scholar 

  14. Barford, D., Molecular Mechanisms of the Protein Serine/Threonine Phosphatases, TIBS, 1996, vol. 21, pp. 407-412.

    Google Scholar 

  15. Ruznak, F. and Reiter, T., Sensing Electrons: Phosphatase Redox Regulation, TIBS, 2000, vol. 25, pp. 527-529.

    Google Scholar 

  16. Liu, J., Farmer, J.D., Jr., Lane, W.S., Friedman, J., Weissman, I., and Schreider, S.L., Calcineurin Is a Common Target of Cyclophilin-Cyclosporin A and FKBP-FK506 Complexes, Cell, 1991, vol. 66, pp. 807-815.

    Google Scholar 

  17. Shibasaki, F., Hallin, U., and Uchiro, H., Calcineurin as a Multifunctional Regulator, J. Biochem., 2002, vol. 131, pp. 1-15.

    Google Scholar 

  18. Hunter, T., Protein Kinases and Phosphatases: The Yin and Yang of Protein Phosphorylation and Signaling, Cell, 1995, vol. 80, pp. 225-236.

    Google Scholar 

  19. Lawson, J.E., Niu, X.-D., Browning, K.S., Trong, H.L., Yan, J., and Reed, L.J., Molecular Cloning and Expression of the Catalytic Subunit of Bovine Pyruvate Dehydrogenase Phosphatase and Sequence Similarity with Protein Phosphatase 2C, Biochemistry, 1993, vol. 32, pp. 8987-8993.

    Google Scholar 

  20. Leung, J., Bouvier-Durand, M., Morris, P.-C., Guerrier, D., Chefdor, F., and Giraudat, J., Arabidopsis ABA Response Gene ABI1: Features of a Calcium-Modulated Protein Phosphatase, Science, 1994, vol. 264, pp. 1448-1452.

    Google Scholar 

  21. Klumpp, S., Selke, D., and Hermesmeier, J., Protein Phosphatase Type 2C Active at Physiological Mg2+ Stimulation by Unsaturated Fatty Acids, FEBS Lett., 1998, vol. 437, pp. 229-232.

    Google Scholar 

  22. Pellegrini, M., Panara, F., Angiolillo, A., Lucentini, L., Maras, B., and Panara, F., Structural and Immunological Similarities between High Molecular Weight Zinc-Dependent p-Nitrophenylphosphatase and Fructose-1,6-Biphosphate Aldolase from Bovine Liver, Biochim. Biophys. Acta, 2001, vol. 1546, pp. 226-233.

    Google Scholar 

  23. Panara, F., The Presence of a Zn2+-Dependent Acid p-Nitrophenylphosphatase in Bovine Liver. Isolation and Properties, Biochem J., 1986, vol. 235, pp. 265-268.

    Google Scholar 

  24. Panara, F., Zn2+-Dependent Acid p-Nitrophenylphosphatase from Chicken Liver. Purification, Characterization and Subcellular Localization, Int. J. Biochem., 1988, vol. 20, pp. 457-462.

    Google Scholar 

  25. Panara, F., Massetti, N., Angiolillo, A., Fagotti, A., and Pascolini, R., Purification and Subcellular Localization of Zn-Dependent Acid p-Nitrophenylphosphatase in Frog Liver and Comparison with Other Vertebrates, J. Exper. Zool., 1990, vol. 254, pp. 119-126.

    Google Scholar 

  26. Angiolillo, A. and Panara, F., Human Liver High Molecular Weight Zinc-Dependent Acid p-Nitrophenylphosphatase. Purification and Properties, Biol. Pharm. Bull., 1997, vol. 20, pp. 1235-1239.

    Google Scholar 

  27. Caselli, A., Cirri, P., Bonifacio, S., Manao, G., Camici, G., Cappugi, G., Moneti, G., and Ramponi, G., Identity of Zinc Ion-Dependent Acid Phosphatase from Bovine Brain and Myoinositol 1-Phosphatase, Biochim. Biophys. Acta, 1996, vol. 1290, pp. 241-249.

    Google Scholar 

  28. Fujimoto, S., Okano, I., Tanaka, Y., Sumida, Y., Tsuda, J., Kawakami, N., and Shimohama, S., Zinc-Ion-Dependent Acid Phosphatase Exhibits Magnesium-Ion-Dependent Myoinositol-1-Phosphatase Activity, Biol. Pharm. Bull., 1996, vol. 19, pp. 882-885.

    Google Scholar 

  29. Tsuda, J., Kimura, T., Tanino, H., and Fujimoto, S., Characterization of High-and Low-Molecular Weight Zinc-Dependent Acid Phosphatases in Bovine Liver, Biol. Pharm. Bull., 1998, vol. 21, pp. 1218-1221.

    Google Scholar 

  30. Vincent, J.B. and Averill, B.A., An Enzyme with a Double Identity: Purple Acid Phosphatase and Tartrate-Resistant Acid Phosphatase, FASEB J., 1990, vol. 12, pp. 3009-3014.

    Google Scholar 

  31. Klabunde, T., Ströter, N., Krebs, B., and Witzel, H., Structural Relationship between the Mammalian Fe(III)—Fe(II) and the Fe(III)—Zn(II) Plant Purple Acid Phosphatases, FEBS Lett., 1995, vol. 367, pp. 56-60.

    Google Scholar 

  32. Schenk, G., Korsinczky, M.L.J., Hume, D.A., Hamilton, S., and De Jersey, J., Purple Acid Phosphatases from Bacteria: Similarities to Mammalian and Plant Enzymes, Gene, 2000, vol. 255, pp. 419-424.

    Google Scholar 

  33. Beck, J.L., Keough, D.T., Jersey, J., and Zerner, B., Enzymatically Active Zinc, Copper and Mercury Derivatives of the One Iron Form of Pig Allantoic Fluid Acid Phosphatase, Biochim. Biophys. Acta, 1984, vol. 791, pp. 357-363.

    Google Scholar 

  34. Merkx, M. and Averill, B.A., The Activity of Oxidized Bovine Spleen Purple Acid Phosphatase is Due to a Fe(III)—Zn(II) “Impurity”, Biochemistry, 1998, vol. 37, pp. 11223-11231.

    Google Scholar 

  35. Halleen, J.M., Kaija, H., Stepan, P., and Väänänen, H.K., Studies on the Protein Tyrosine Phosphatase Activity of Tartrate-Resistant Acid Phosphatase, Arch. Biochem. Biophys., 1998, vol. 352, pp. 97-102.

    Google Scholar 

  36. Allen, S.H., Nuttleman, P.R., Ketcham, C.M., and Roberts, R.M., Purification and Characterization of Human Bone Tartrate Resistant Acid Phosphatase, J. Bone Miner. Res., 1989, vol. 4, pp. 47-55.

    Google Scholar 

  37. Szalewicz, A., Strzelczyk, B., and Kubicz, A., Modulatory Effect of Divalent Metal Cations on the Phosphotyrosine Activity of the Frog Liver Phosphatase, Acta Biochim. Polon., 1999, vol. 46, pp. 217-221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sopina, V.A. Acid Metallophosphatase from the Ameba Amoeba proteus . Journal of Evolutionary Biochemistry and Physiology 40, 28–36 (2004). https://doi.org/10.1023/B:JOEY.0000031002.56892.d6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEY.0000031002.56892.d6

Keywords

Navigation