Skip to main content
Log in

Extracellular, Highly Stable, Alkaline Peptidases of the Alkalophilic Bacteria Alkalicaulis satelles G-192t and Aliidiomarina sp. P-156 and Their Possible Use in the Composition of Detergents

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The peptidase activity of the alkaliphilic, aerobic, proteolytic bacteria Alkalicaulis satelles G-192T and Aliidiomarina sp. P-156 isolated from the system of hypersaline, alkaline Tanatar lakes (Altai Territory) was studied. Strains G-192 and P-156 710 were shown to hydrolyze para-nitroanilide substrates and exhibit the highest activity hydrolyzing of the aminopeptidase LpNa substrate. Analysis of partially purified peptidase preparations showed that the enzymes were most active and stablest in an alkaline pH range of 8.4–11. The peptidases of strains G-192 and P-156 were highly stable in NaCl up to 220 and 70 g/L respectively. The results of inhibitor analysis and the substrate specificity of the studied extracellular enzymes indicated their classification as metallopeptidases of the aminopeptidase type. The studied peptidases showed significant resistance to the surfactants Triton X-100 and SDS and the oxidizing agent H2O2. The isolated bacteria that produce peptidases can be used as a source of proteolytic enzymes in the development of new detergents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Luo, L., Meng, H., and Gu, J-D., J. Environ. Manage., 2017, vol. 197, pp. 539–549.

    Article  CAS  Google Scholar 

  2. Ibrahim, A.S.S., Al-Salamah, A.A., El-Badawi, Y.B., El-Tayeb, M.A., and Antranikian, G., Extremophiles, 2015, vol. 19, no. 5, pp. 961–971.

    Article  CAS  Google Scholar 

  3. Garg, S.K. and Singh, K.S., Enz. Eng., 2015, vol. 4, no. 2. Art. 129. https://doi.org/10.4172/2329-6674.1000129

    Article  CAS  Google Scholar 

  4. Sharma, M., Gat, Y., Arya, S., Kumar, V., Panghal, A., and Kumar, A.A., Ind. Biotechnol., 2019, vol. 15, no. 2, pp. 69–78.

    Article  CAS  Google Scholar 

  5. Zhang, H., Li, H., Lang, D.A., Xu, H., and Zhu, H., J. Chem. Technol. Biotechnol., 2018, vol. 93, pp. 3627–3637.

    Article  CAS  Google Scholar 

  6. Zhou, C., Qin, H., Chen, X., Zhangy, Xue, Y., and Ma, Y., Sci Rep., 2018, vol. 8. Art. 16467. https://doi.org/10.1038/s41598-018-34416-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Uma, G., Babu, M.M., Prakash, V.S.G., Nisha, S.J., and Citarasu, T., J. Microbiol. Biotechnol., 2020, vol. 36, no. 5. Art. 66. https://doi.org/10.1007/s11274-020-02841-2

    Article  CAS  Google Scholar 

  8. Danilova, I. and Sharipova, M., Front. Microbiol., 2020, vol. 11, p. 1782. https://doi.org/10.3389/fmicb.2020.01782

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gessesse, A. and Gashe, B.A., Biotechnol. Lett., 1997, vol. 19, pp. 479–481.

    Article  CAS  Google Scholar 

  10. Nilegaonkar, S., Kanekar, P., Sarnaik, S., and Kelkar, A.S., J. Microbiol. Biotechnol., 2002, vol. 18, pp. 785–789.

    Article  CAS  Google Scholar 

  11. Karan, R., Singh, S.P., Kapoor, S., and Khare, S.K., N. Biotechnol., 2011, vol. 28, no. 2, pp. 136–145.

    Article  CAS  Google Scholar 

  12. Ibrahim, A.S., Al-Salamah, A.A., El-Badawi, Y.B., El-Tayeb, MohamedA., and Ibrahim, S.S., Biosci. J., 2016, vol. 32, no. 6, pp. 1604–1618.

    Article  Google Scholar 

  13. Rathod, M.G. and Pathak, A.P., Data Brief, 2016, vol. 8, pp. 863–866.

    Article  Google Scholar 

  14. Abdel-Hamed, A.R., Abo-Elmatty, D.M., Wiegel, J., and Mesbah, N.M., Extremophiles, 2016, vol. 20, pp. 885–894.

    Article  CAS  Google Scholar 

  15. Kevbrin, V., Boltyanskaya, Y., Koziaeva, V., Uzun, M., and Grouzdev, D., Int. J. Syst. Evol. Microbiol., 2021, vol. 71, no. 1. https://doi.org/10.1099/ijsem.0.004614

  16. Erlanger, B.F., Kokowsky, N., and Cohen, W., Arch. Biochem. Biophys., 1961, vol. 95, no. 2, pp. 271–278.

    Article  CAS  Google Scholar 

  17. Patel, A.R., Mokashe, N.U., Chaudhari, D.S., Jadhav, A.G., and Patil, U.K., Biocatal. Agric. Biotechnol., 2019, vol. 19, pp. 101–122.

    Article  Google Scholar 

  18. Ibrahim, A.S.S., Elbadawi, Y.B., Tayeb, M.A.E., Maary, K.S.A., Maany, D.A.F., Ibrahim, S.S.S., and Elagib, A.A., 3 Biotech., 2019, vol. 9, no. 11, p. 391.

  19. Abu-Khudir, R., Salem, M.M., Allam, N.G., and Ali, E.M.M., Appl. Biochem. Biotechnol., 2019, vol. 189, no. 1, pp. 87–102.

    Article  CAS  Google Scholar 

  20. Yildirim, V., Baltaci, M.O., Ozgencli, I., Sisecioglu, M., Adiguzel, A., and Adiguzel, G., J. Enzyme Inhib. Med. Chem., 2017, vol. 32, no. 1, pp. 468–477.

    Article  CAS  Google Scholar 

  21. Mokashe, N., Chaudhari, B., and Patil, U., J. Surfactants Deterg., 2017, vol. 20, no. 6, pp. 1377–1393.

    Article  CAS  Google Scholar 

  22. Mothe, T. and Sultanpuram, V., 3 Biotech., 2016, vol. 6, no. 53. https://doi.org/10.1007/s13205-016-0377-y

  23. Gupta, R., Beg, Q., and Lorenz, P., Appl. Microbiol. Biotechnol., 2002, vol. 59, pp. 15–32.

    Article  CAS  Google Scholar 

  24. Jaouadi, N.Z., Jaouadi, B., Aghajari, N., and Bejar, S., Process Biochem., 2012, vol. 105, pp. 142–151.

    Google Scholar 

  25. Hellmuth, H. and Dreja, M., Tenside Surfactants Deterg., 2016, vol. 53, pp. 502–508.

    Article  CAS  Google Scholar 

  26. Holmberg, K., Colloids Surf. B Biointerfaces, 2018, vol. 168, pp. 169–177.

    Article  CAS  Google Scholar 

  27. Shaikh, I.K., Dixit, P.P., and Shaikh, T.M., J. Genet. Eng. Biotechnol., 2018, vol. 16, no. 2, pp. 273–279.

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out with the financial support of the Russian Foundation for Basic Research, project no. 18-04-00236, partly within the framework of the state assignment AAAA-A19-119020590109-3 for the Federal Research Center of Biotechnology of the Russian Academy of Sciences and partly within the framework of the state assignment 0271-2021-0003 (FWSM-2021-0003) for a Federal State Budgetary Institution of Science, the Institute of General and Experimental Biology of the Siberian Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Lavrentyeva.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavrentyeva, E.V., Erdyneeva, E.B., Dunaevskii, Y.E. et al. Extracellular, Highly Stable, Alkaline Peptidases of the Alkalophilic Bacteria Alkalicaulis satelles G-192t and Aliidiomarina sp. P-156 and Their Possible Use in the Composition of Detergents. Appl Biochem Microbiol 57, 725–731 (2021). https://doi.org/10.1134/S0003683821060089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821060089

Keywords:

Navigation