Skip to main content
Log in

Phase transformations and structure characterization of calcium polyphosphate during sintering process

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Calcium polyphosphate (CPP) may be a promising bone substitute with controllably degraded ability. In this investigation, the effects of sintering temperatures on CPP's phase transformations and microstructure parameters, such as the distribution of crystallite size and micro-strain, were investigated by X-ray diffraction (XRD). The qualitative phase analysis and quantitative phase analysis based on reference intensity ratio (RIR) method were conducted for the CPP sintered at 585, 600, 650, 700, 750, 800 and 900°C. The distribution of crystallite size and micro-strain were calculated with the Warren-Averbach Fourier Transfer method. The results demonstrated that the transformation of amorphous CPP to semi-crystalline CPP occurred below 585°C, and semi-crystalline CPP to γ-CPP at temperature of 585–600°C; γ-CPP to β-CPP at 585–700°C. CPP sintered between 600–700°C were composed of both γ-CPP and β-CPP, and the mass fraction of β-CPP increased with rising of temperature. Above 700°C, the sintered CPP only contained β-CPP. At different ranges of the sintering temperature, the average crystallite size (D) and micro-strain (ε) showed significant difference, for example, D and ε is about 2.9 nm and 1.68% at 585°C, but D and ε was 8.0 to 8.7 nm and 0.159 to 0.134% at 600 and 700°C, respectively. The results of the phase transformations and the variations of microstructure parameters in the present study may be able to provide some fundamental data for explaining CPP degradation phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Suchanek and M. Yoshimura, J. Mater. Res. 13(1998) 94.

    Google Scholar 

  2. S. D. Boden, Tissue Eng. 6(2000) 383.

    PubMed  Google Scholar 

  3. D. Baksh and J. E. Davies, J. Mater. Sci.: Mater. In Med. 9(1999) 743.

    Google Scholar 

  4. R. M. Pilliar, M. J. Filiaggi, J. D. Wells, M. D. Grynpas and R. A. Kandel, Biomaterials 22(2001) 963.

    PubMed  Google Scholar 

  5. J. Lee and S. Kim, “Transactions of 5th World Biomaterials Congress,” Toronto, Canada, 1996, p. 53.

  6. V. A. Sinyaev, E. S. Shustikova, L. V. Levchenko and A. A. Sedunov, Inorg. Mater. 37(2002) 735.

    Google Scholar 

  7. Y. Abe and T. Kasuga, J. Amer. Ceram. Soc. 65(1982) 189.

    Google Scholar 

  8. J. W. Barlow, G. H. Lee, C. R. Hrawford, J. J Beaman, H. L. Marcus and R. J. Lagos, U.S. Patent No. 5,639,402, June 17, 1997.

  9. J. W. Barlow, G. Lee, R. H. Crawford, J. J. Beaman, H. L. Marcus and R. J. Lagow, US Patent, US 6183515B, Feb. 6, 2001.

  10. N. L. Porter, R. M. Pilliar and M. D. Grynpas, J. Biomed. Mater. Res. 56(2001) 504.

    PubMed  Google Scholar 

  11. S. R. Nelson, L. M. Wolford, R. J. Lagow, P. J. Capano and W. L. Davis, J. Oral. Maxillofac. Surg. 51(1993) 1363.

    PubMed  Google Scholar 

  12. H. Fukui, Y. Taki and Y. Abe, J. Dent. Res. 56(1977) 1260.

    PubMed  Google Scholar 

  13. M. D. Grynpas, R. M. Pilliar, R. A. Kandel, R. Renluns, M. Filiaggi and M. Dumitriu, Biomaterials 23(2002) 2063.

    PubMed  Google Scholar 

  14. G. Lee, J. W. Barlow and W. C. Fox, “Solid Free from Fabrication Symposium,” edited by H. L. Marcus et al.Austin, TX, USA, 1996, p. 15.

  15. Zhao Lin and Sun Zheng-Yi, Chinese J. Reparative and Reconstr. Surg. 16(2002) 300.

    Google Scholar 

  16. H. Toraya, Powder Diffr. 4(1989) 70.

    Google Scholar 

  17. F. H. Chung, J. Appl. Cryst. 7(1974a) 513.

    Google Scholar 

  18. A. O. McIntosh and W. L. Jablonski, Anal. Chem. 9(1956) 1424.

    Google Scholar 

  19. A. G. Lvarez and R. D. Bonetto, Powder Diffraction 2(1987) 220.

    Google Scholar 

  20. F. H. Chung, J. Appl. Cryst 7(1974b) 526.

    Google Scholar 

  21. Idem., ibid.8(1975) 17.

  22. R. L. Snyder, Powder Diffr. 7(1992) 186.

    Google Scholar 

  23. W. Rothammel and H Burzlaff, Acta Crystallogr.Sec. C 45(1989) 551.

    Google Scholar 

  24. L. L. Hench and J. M. Polak, Science 295(2002) 1014.

    PubMed  Google Scholar 

  25. M. Schneider, K. H. Jost and P. Z. Leibnitz, Anorg. Allg. Chem. 99(1985) 527.

    Google Scholar 

  26. M. Filiaggi, R. Pilliar and J. Hong, Key Engng. Mater., 192–195(2001) 171.

    Google Scholar 

  27. H. P. Klug and L. E. Alexander, in “X-ray Diffraction Procedure for Polycrystalline and Amorphous Materials” (John Wiley & Son, 1974).

  28. Y. Abe, T. Arahori and A. Naruse, J. Amer. Ceram. Soc. 59(1976) 487.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, L., Li, H. & Gao, X. Phase transformations and structure characterization of calcium polyphosphate during sintering process. Journal of Materials Science 39, 7041–7047 (2004). https://doi.org/10.1023/B:JMSC.0000047549.18666.85

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000047549.18666.85

Keywords

Navigation