Skip to main content
Log in

Heat Capacity and Thermodynamic Properties of Inorganic Compounds Containing Tetrahedral Anions (BH- 4, AlH- 4, GaH- 4, BF- 4, ClO- 4, BrO- 4, and IO- 4)

  • Published:
Inorganic Materials Aims and scope

Abstract

Adiabatic and differential scanning calorimetry data are presented on the heat capacity of inorganic compounds containing tetrahedral anions. The entropy and enthalpy of phase transitions in these compounds are evaluated, and the mechanisms of the transitions are discussed in terms of orientational disordering. The heat capacity data are used to estimate, by an additive scheme, the frequencies of lattice (translational and librational) vibrations. It is shown that the BH- 4 anion experiences hindered rotation in lattice sites, while the anions in the other complex hydrides, perhalates, and fluoroborates undergo librational vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Termicheskie konstanty veshchestv: Spravochnik (Thermal Constants of Substances: A Handbook), Glushko, V.P., Ed., Moscow: VINITI, 1965–1982.

    Google Scholar 

  2. JANAF Thermochemical Tables, 2nd ed., Stull, D.R. and Prophet, H., Eds., Natl. Stand. Ref. Data Ser., 1972, no. 31.

  3. Gurevich, V.M., Gavrichev, K.S., Gorbunov, V.E., et al., Low-Temperature Heat Capacity of Celestine, SrSO4, Geokhimiya, 1997, no. 3, pp. 305–312.

    Google Scholar 

  4. Levy, H.A. and Peterson, S.W., Neutron Diffraction Determination of the Crystal Structure of Ammonium Bromide in Four Phases, J. Am. Chem. Soc., 1953, vol. 5, pp. 1536–1541.

    Google Scholar 

  5. White, M.A., Green, N.H., and Staveley, L.A.K., The Heat Capacity of Ammonium Tetrafluoroborate from 9 to 294 K, J. Chem. Thermodyn., 1981, vol. 13, pp. 283–289.

    Google Scholar 

  6. Callanan, J.E., Weir, R.D., and Westrum, E.F., Heat Capacity of Deuterated Ammonium Tetrafluoroborate ND4BF4 from 7 K to 348 K, J. Chem. Thermodyn., 1990, vol. 22, pp. 957–968.

    Google Scholar 

  7. Brown, R.J.C., Callanan, J.E., Haslett, T.L., et al., The Thermodynamics of Ammonium Scheelites: IV. Heat Capacity of Ammonium Metaperiodate NH4IO4 from 8 to 324 K, J. Chem. Thermodyn., 1987, vol. 19, pp. 711–716.

    Google Scholar 

  8. Brown, R.J.C., Callanan, J.E., Haslett, T.L., et al., The Thermodynamics of Ammonium Scheelites: V. Heat Capacity of Deuterated Ammonium Metaperiodate ND4IO4 from 8 to 324 K, J. Chem. Thermodyn., 1987, vol. 19, pp. 1111–1116.

    Google Scholar 

  9. Staveley, L.A.K., Grey, N.R., and Layzell, M.J., A Calorimetric Study of Ammonium, Rubidium, and Potassium Hexafluorophosphates, Z. Naturforsch., A: Phys. Sci., 1963, vol. 18, pp. 148–154.

    Google Scholar 

  10. Callanan, J.E., Weir, R.D., and Westrum, E.F., Heat Capacity and Thermodynamic Properties of Deuterated Ammonium Hexafluorophosphate ND4PF6 from 5.8 to 347 K, J. Chem. Thermodyn., 1990, vol. 22, pp. 979–990.

    Google Scholar 

  11. Weir, R.D. and Staveley, L.A.K., The Heat Capacity and Thermodynamic Properties of Potassium Perrhenate and Ammonium Perrhenate from 8 to 304 K, J. Chem. Phys., 1980, vol. 73, no. 3, pp. 1386–1392.

    Google Scholar 

  12. Brown, R.J.C., Callanan, J.E., Weir, R.D., and Westrum,E.F., The Thermodynamics of Ammonium Scheelites: II. Heat Capacity of Deuterated Ammonium Perrhenate from 7.5 to 320 K, J. Chem. Thermodyn., 1986, vol. 18, pp. 787–792.

    Google Scholar 

  13. Weir, R.D. and Westrum, E.F., Thermodynamics, Phase Transitions, and Crystal Structure of Ammonium Hexahalides: Comparative Study of the Heat Capacity and Thermodynamic Properties of (NH4)2PtCl6, (ND4)2PtCl6, (NH4)2PtBr6, (ND4)2PtBr6, (NH4)2PdCl6, (ND4)2PdCl6, (NH4)2TeCl6, (ND4)2TeCl6, and (NH4)2RuCl6 from 5 K to 350 K, J. Chem. Thermodyn., 2002, vol. 34, no. 2, pp. 133–153.

    Google Scholar 

  14. Smith, D., Hindered Rotation of the Ammonium Ion in the Solid State, Chem. Rev. (Washington, D. C.), 1994, vol. 94, pp. 1567–1584.

    Google Scholar 

  15. Semenenko, K.N., Chavgun, A.P., and Surov, V.R., Reactions of Sodium Borohydride with Potassium and Lithium Borohydrides, Zh. Neorg. Khim., 1971, vol. 16, no. 3, pp. 513–516.

    Google Scholar 

  16. Stephenson, C.C., Rice, D.W., and Stockmayer, W.H., Order-Disorder Transitions in the Alkali Borohydrides, J. Chem. Phys., 1955, vol. 23, p. 1960.

    Google Scholar 

  17. Abrahams, S.C. and Kalnajs, J., The Lattice Constants of the Alkali Borohydrides and the Low-Temperature Phase of Sodium Borohydride, J. Chem. Phys., 1954, vol. 22, no. 3, p. 434.

    Google Scholar 

  18. Stockmayer, W.H. and Stephenson, C.C., The Nature of the Gradual Transition in Sodium Borohydride, J. Chem. Phys., 1953, vol. 21, pp. 1311–1312.

    Google Scholar 

  19. Johnston, H.L. and Hallett, N.C., Low Temperature Heat Capacities of Inorganic Solids: XIV. Heat Capacity of Sodium Borohydride from 15–300 K, J. Am. Chem. Soc., 1953, vol. 75, pp. 1467–1468.

    Google Scholar 

  20. Furukawa, G.T., Reilly, M.L., and Picirelli, J.H., Heat Capacity of Potassium Borohydride (KBH4) from 15 to 375 K. Thermodynamic Properties from 0 to 700 K, J. Res. Natl. Bur. Stand., Sect. A, 1964, vol. 68, no. 6, pp. 651–659.

    Google Scholar 

  21. Hallett, N.C. and Johnston, H.L., Low Temperature Heat Capacities of Inorganic Solids: XIII. Heat Capacity of Lithium Borohydride, J. Am. Chem. Soc., 1953, vol. 75, pp. 1496–1498.

    Google Scholar 

  22. Gorbunov, V.E., Gavrichev, K.S., Zalukaev, V.L., et al., Heat Capacity and Phase Transition of Lithium Borohydride, Zh. Neorg. Khim., 1984, vol. 29, no. 9, pp. 2333–2337.

    Google Scholar 

  23. Gorbunov, V.E., Gavrichev, K.S., and Bakum, S.I., Low-Temperature Heat Capacity of Rubidium Borohydride, RbBH4, Zh. Fiz. Khim., 1985, vol. 59, no. 12, pp. 2926–2929.

    Google Scholar 

  24. Gorbunov, V.E., Gavrichev, K.S., Totrova, G.A., and Bakum, S.I., Low-Temperature Heat Capacity of Cesium Borohydride, CsBH4, Zh. Fiz. Khim., 1986, vol. 60, no. 2, pp. 496–498.

    Google Scholar 

  25. Pistorius, C.W.F.T., Melting and Polymorphism of LiBH4 to 45 kbar, Z. Phys. Chem. Neue Folge, 1974, vol. 88, pp. 253–263.

    Google Scholar 

  26. Gorbunov, V.E., Gavrichev, K.S., and Bakum, S.I., Thermodynamic Properties of LiAlH4 from 12 to 320 K, Zh. Neorg. Khim., 1981, vol. 26, no. 1, pp. 311–314.

    Google Scholar 

  27. Bonnetot, B., Claudy, P., Dyot, M., and Letoff, J.M., Lithium Tetrahydridoaluminate LiAlH4 and Hexahydridoaluminate Li3AlH6: Molar Heat Capacity and Thermodynamic Properties, J. Chem. Thermodyn., 1979, vol. 11, no. 12, pp. 1197–1202.

    Google Scholar 

  28. Bonnetot, B., Chahine, G., Claudy, P., et al., Sodium Tetrahydridoaluminate NaAlH4 and Hexahydridoaluminate Na3AlH6: Molar Heat Capacity and Thermodynamic Properties, J. Chem. Thermodyn., 1980, vol. 12, no. 3, pp. 249–254.

    Google Scholar 

  29. Gavrichev, K.S., Gorbunov, V.E., and Bakum, S.I., Low-Temperature Heat Capacity of Sodium Tetrahydridoaluminate, Zh. Neorg. Khim., 1981, vol. 26, no. 8, pp. 2039–2041.

    Google Scholar 

  30. Gorbunov, V.E., Gavrichev, K.S., and Bakum, S.I., Low-Temperature Heat Capacity of KAlH4, Zh. Fiz. Khim., 1982, vol. 56, no. 11, pp. 2857–2859.

    Google Scholar 

  31. Gavrichev, K.S., Gorbunov, V.E., and Bakum, S.I., Thermodynamic Properties of Rubidium Tetrahydridoaluminate, RbAlH4, from 12 to 320 K, Zh. Neorg. Khim., 1981, vol. 26, no. 11, pp. 2899–2900.

    Google Scholar 

  32. Gorbunov, V.E., Gavrichev, K.S., and Bakum, S.I., Heat Capacity of Cesium Tetrahydridoaluminate, CsAlH4, from 15 to 340 K, Zh. Fiz. Khim., 1984, vol. 60, no. 2, pp. 499–500.

    Google Scholar 

  33. Mikheeva, V.I. and Arkhipov, S.M., On the Thermal Decomposition of Lithium Tetrahydridoaluminate, Zh. Neorg. Khim., 1967, vol. 12, no. 8, pp. 2025–2031.

    Google Scholar 

  34. Dymova, T.N. and Bakum, S.I., On the Thermal Decomposition of Sodium and Potassium Hydridoaluminates, Zh. Neorg. Khim., 1969, vol. 14, no. 12, pp. 3190–3195.

    Google Scholar 

  35. Mirsaidov, U., Bakum, S.I., and Dymova, T.N., Some Properties of Alkali Hydridoaluminates, Izv. Akad. Nauk TadzhSSR, Otd. Fiz.-Mat. Geol.-Khim. Nauk, 1978, no. 1 (67), pp. 37–41.

  36. Gorbunov, V.E., Gavrichev, K.S., and Bakum, S.I., Heat Capacity and Thermodynamic Functions of NaGaH4 and RbGaH4 from 11 to 320 K, Zh. Neorg. Khim., 1982, vol. 27, no. 8, pp. 1915–1920.

    Google Scholar 

  37. Gorbunov, V.E., Gavrichev, K.S., and Bakum, S.I., Heat Capacity and Thermodynamic Functions of KGaH4 from 15 to 317 K, Zh. Neorg. Khim., 1982, vol. 27, no. 6, pp. 1580–1581.

    Google Scholar 

  38. Gavrichev, K.S., Gorbunov, V.E., and Bakum, S.I., Low-Temperature Heat Capacity and Thermodynamic Properties of Cesium Tetrahydridogallate, Zh. Neorg. Khim., 1981, vol. 26, no. 1, pp. 274–275.

    Google Scholar 

  39. Kovba, L.M., Gorbunov, V.E., and Gavrichev, K.S., Crystal Structure of Alkali Tetrahydridogallates, Zh. Neorg. Khim., 1986, vol. 32, no. 1, pp. 260–262.

    Google Scholar 

  40. Bakum, S.I. and Ereshko, S.F., Synthesis of Alkali Tetrahydridogallates, Zh. Neorg. Khim., 1977, vol. 22, no. 3, pp. 655–659.

    Google Scholar 

  41. Irodova, A.V., Somenkov, V.A., Bakum, S.I., and Kuznetsova, S.F., Structure of NaGaH4(D4), Z. Phys. Chem. Neue Folge, 1989, vol. 163, pp. 239–242.

    Google Scholar 

  42. Gorbunov, V.E., Gavrichev, K.S., Totrova, G.A., et al., Heat Capacity and Properties of Lithium Tetrafluoroborate from 10 to 340 K, Zh. Neorg. Khim., 1993, vol. 38, no. 2, pp. 217–219.

    Google Scholar 

  43. Gavrichev, K.S., Gorbunov, V.E., Golushina, L.N., et al., Low-Temperature Heat Capacity of Sodium Tetrafluoroborate Zh. Neorg. Khim., 1996, vol. 41, no. 8, pp. 1347–1349.

    Google Scholar 

  44. Callanan, J.E., Granville, N.W., Green, N.H., et al., A Study of Cationic Disorder in Nitrosyl Tetrafluoroborate, by Comparison of the Heat Capacity of This Salt with That of Potassium Tetrafluoroborate from 9 to 304 K, J. Chem. Phys., 1981, vol. 74, no. 3, pp. 1911–1915.

    Google Scholar 

  45. Gorbunov, V.E., Gavrichev, K.S., Totrova, G.A., et al., Low-Temperature Heat Capacity of Potassium Tetrafluoroborate, Zh. Fiz. Khim., 1993, vol. 67, no. 3, pp. 609–611.

    Google Scholar 

  46. Gavrichev, K.S., Gorbunov, V.E., Golushina, L.N., et al., Low-Temperature Heat Capacity of Rubidium Tetrafluoroborate, Zh. Neorg. Khim., 1996, vol. 41, no. 12, pp. 2105–2107.

    Google Scholar 

  47. Gavrichev, K.S., Gorbunov, V.E., Golushina, L.N., et al., Heat Capacity of CsBF4 from 12 to 320 K, Zh. Fiz. Khim., 1994, vol. 68, no. 5, pp. 784–786.

    Google Scholar 

  48. Cantor, S., McDermott, D.P., and Gilpatrick, L.O., Volumetric Properties of Molten and Crystalline Alkali Fluoroborates, J. Chem. Phys., 1970, vol. 52, pp. 4600–4605.

    Google Scholar 

  49. Morano, R.J. and Shuster, E.R., Determination of the Rhombic to Cubic Transition Temperature of the Alkali Metal Tetrafluoroborates Using Differential Thermal Analysis, Thermochim. Acta, 1960, vol. 1, pp. 521–527.

    Google Scholar 

  50. Reynhardt, E.S. and Lourens, J.A.J., An NMR Study of Molecular Reorientations and Diffusion in Solid LiBF4, J. Chem. Phys., 1984, vol. 80, pp. 6240–6244.

    Google Scholar 

  51. Brunton, G., Refinement of the Structure of NaBF4, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1968, vol. 24, pp. 1703–1706.

    Google Scholar 

  52. Dworkin, A.S., Enthalpy of Lithium Tetrafluoroborate from 298–700 K. Enthalpy and Entropy of Fusion, J. Chem. Eng. Data, 1972, vol. 17, no. 3, pp. 284–285.

    Google Scholar 

  53. Dworkin, A.S. and Bredig, M.A., Enthalpy of Alkali Metal Fluoroborates from 298–1000 K, J. Chem. Eng. Data, 1970, vol. 15, no. 4, pp. 505–507.

    Google Scholar 

  54. Weiss, Al. and Zohner, K., Nuclear Quadrupole Interaction of 23Na and 11B and Crystal Structure of NaBF4, Phys. Status Solidi, 1967, vol. 21, pp. 257–270.

    Google Scholar 

  55. Pistorius, C.W.F.T. and Clark, J.B., Phase Relations of RbClO4 and RbBF4 to High Pressures, High Temp.- High Pressures, 1969, vol. 1, pp. 561–570.

    Google Scholar 

  56. Zalukaev, V.L., Gorbunov, V.E., Sharpataya, G.A., et al., Heat Capacity and Thermodynamic Functions of Lithium Perchlorate, Zh. Neorg. Khim., 1981, vol. 26, no. 4, pp. 899–901.

    Google Scholar 

  57. Zalukaev, V.L., Gorbunov, V.E., Sharpataya, G.A., et al., Heat Capacity and Thermodynamic Functions of Sodium Perchlorate, Zh. Neorg. Khim., 1981, vol. 26, no. 12, pp. 3200–3203.

    Google Scholar 

  58. Zalukaev, V.L., Gorbunov, V.E., Sharpataya, G.A., and Babaeva, V.P., Heat Capacity and Thermodynamic Properties of Potassium Perchlorate, Zh. Neorg. Khim., 1984, vol. 29, no. 1, pp. 35–37.

    Google Scholar 

  59. Latimer, W.M. and Ahlberg, J.E., J. Am. Chem. Soc., 1930, vol. 51, no. 2, p. 549.

    Google Scholar 

  60. Zalukaev, V.L., Gorbunov, V.E., Sharpataya, G.A., et al., Heat Capacity and Thermodynamic Functions of Rubidium Perchlorate, Zh. Neorg. Khim., 1986, vol. 31, no. 3, pp. 557–560.

    Google Scholar 

  61. Pitzer, K.S., Smith, W.V., and Latimer, W.M., The Heat Capacity and Entropy of Barium Fluoride, Cesium Perchlorate, and Lead Phosphate, J. Am. Chem. Soc., 1938, vol. 60, pp. 1826–1829.

    Google Scholar 

  62. Zalukaev, V.L., Gorbunov, V.E., Sharpataya, G.A., et al., Heat Capacity and Thermodynamic Functions of Cesium Perchlorate, Zh. Neorg. Khim., 1984, vol. 29, no. 12, pp. 3005–3008.

    Google Scholar 

  63. Strömme, K.O., The Crystal Structure of the Orientally Disordered Cubic High-Temperature Phases of Univalent Metal Perchlorates, Acta Chem. Scand., Ser. A, 1974, vol. 28, p. 515.

    Google Scholar 

  64. Siegel, S., Tani, B., and Appelman, E.H., The Crystal Structure of Potassium Perbromate, Inorg. Chem., 1969, vol. 8, pp. 1190–1193.

    Google Scholar 

  65. Tutov, A.G., Gavrilov, V.V., and Isupov, V.K., Synthesis and X-ray Diffraction Study of Rubidium and Ammonium Perbromate Crystals, Zh. Neorg. Khim., 1986, vol. 31, no. 3, pp. 589–594.

    Google Scholar 

  66. Gerbert, E., Peterson, S.W., Ries, A.H., and Appelman, E.H., The Crystal Structure of Cesium Perbromate, J. Inorg. Nucl. Chem., 1981, vol. 43, no. 12, pp. 3085–3089.

    Google Scholar 

  67. Shreiner, F., Osborn, D.W., Pocius, A.V., and Appelman, E.H., The Heat Capacity of Potassium Perbromate, KBrO4, between 5 and 350 K,Inorg. Chem., 1970, vol. 9, no. 10, pp. 2320–2332.

    Google Scholar 

  68. Gorbunov, V.E., Gavrichev, K.S., Totrova, G.A., et al., Heat Capacity and Thermodynamic Properties of Ammonium Perbromate from 7 to 320 K, Zh. Fiz. Khim., 1990, vol. 64, no. 3, pp. 819–824.

    Google Scholar 

  69. Gorbunov, V.E., Gavrichev, K.S., Golushina, L.N., et al., Low-Temperature Heat Capacity of Rubidium Perbromate, Zh. Fiz. Khim., 1990, vol. 64, no. 2, pp. 528–531.

    Google Scholar 

  70. Gorbunov, V.E., Gavrichev, K.S., Totrova, G.A., et al., Thermodynamic Properties of Cesium Perbromate from 10 to 320 K, Zh. Fiz. Khim., 1990, vol. 64, no. 1, pp. 274–278.

    Google Scholar 

  71. Tarasov, V.P., Petrushin, S.A., and Gusev, Yu.K., 133Cs and 79, 81Br Electric-Field Gradients in Polycrystalline Cesium Perbromate, Dokl. Akad. Nauk SSSR, 1987, vol. 293, no. 6, pp. 1423–1426.

    Google Scholar 

  72. Tarasov, V.P., Petrushin, S.A., and Gusev, Yu.K., 79, 81Br Electric-Field Gradients in Polycrystalline Ammonium Perbromate, Zh. Neorg. Khim., 1988, vol. 33, no. 3, pp. 804–806.

    Google Scholar 

  73. Tarasov, V.P., Privalov, V.I., Gavrichev, K.S., et al., Nuclear Quadrupole Coupling and Phase Transformations in Alkali-Metal and Ammonium Perbromates, Materialy III vsesoyuznoi konferentsii po kvantovoi khimii i spektroskopii tverdogo tela (Proc. of III All-Union Conf. on the Quantum Chemistry and Spectroscopy of Solids), Sverdlovsk, 1989, pp. 32–35.

  74. Tarasov, V.P., Privalov, V.I., Gavrichev, K.S., et al., Nuclear Quadrupole Coupling and Phase Transitions in Alkali-Metal and Ammonium Perbromates, Koord. Khim., 1990, vol. 16, no. 12, p. 1990.

    Google Scholar 

  75. Segel, S.L., Brown, R.J.C., and Heyding, R.D., Thermal Expansion and 127I Nuclear Quadrupole Coupling in Ammonium Metaperiodate, J. Chem. Phys., 1978, vol. 69, no. 7, pp. 3435–3436.

    Google Scholar 

  76. Tarasov, V.P., Petrushin, S.A., Privalov, V.I., et al., 99Tc Nuclear Quadrupole Coupling in Polycrystalline Pertechnetates, Koord. Khim., 1986, vol. 12, no. 9, pp. 1227–1236.

    Google Scholar 

  77. Tegita, K., Nakamura, N., and Chihara, H., Effect of Ammonium Ion Reorientation on Anomalous Temperature Dependence of Nuclear Quadrupole Resonance Frequencies, Chem. Phys. Lett., 1979, vol. 69, no. 1, p. 187.

    Google Scholar 

  78. Penkalya, T., Ocherki kristallografii (Essays on Crystallography), Leningrad: Khimiya, 1974, p. 496.

    Google Scholar 

  79. Gavrichev, K.S., Gorbunov, V.E., Totrova, G.A., et al., Low-Temperature Heat Capacity of Rubidium Metaperiodate, Zh. Fiz. Khim., 1990, vol. 64, no. 6, pp. 1690–1693.

    Google Scholar 

  80. Staveley, L.A.K. and Weir, R.D., The Heat Capacity of Potassium Metaperiodate, KIO4, from 8.0 to 309 K, J. Chem. Thermodyn., 1984, vol. 16, no. 2, pp. 165–170.

    Google Scholar 

  81. Gavrichev, K.S., Gorbunov, V.E., Golushina, L.N., et al., Heat Capacity of Cesium Metaperiodate from 12 to 340 K, Zh. Fiz. Khim., 1990, vol. 64, no. 8, pp. 2236–2240.

    Google Scholar 

  82. Arend, H., Granicher, H., Hely, U., and Hoffmann, R., Phasenumwandlung in Caesiumperjodat, Helv. Phys. Acta., B, 1970, vol. 43, no. 5, p. 484.

    Google Scholar 

  83. Tarasov, V.P., Kirakosyan, G.A., and Gusev, Yu.K., Phase Transitions of Polycrystalline Cesium Metaperiodate, Dokl. Akad. Nauk SSSR, 1990, vol. 311, no. 6, pp. 1412–1416.

    Google Scholar 

  84. Zalukaev, V.L., Gorbunov, V.E., Sharpataya, G.A., and Gavrichev, K.S., Heat Capacity and Thermodynamic Functions of Magnesium Perchlorate, Zh. Neorg. Khim., 1982, vol. 27, no. 12, pp. 3053–3055.

    Google Scholar 

  85. Zalukaev, V.L., Gorbunov, V.E., Gavrichev, K.S., et al., Thermodynamic Properties of Calcium Perchlorate, Zh. Neorg. Khim., 1988, vol. 33, no. 11, pp. 2736–2740.

    Google Scholar 

  86. Zalukaev, V.L., Gorbunov, V.E., Sharpataya, G.A., et al., Heat Capacity and Thermodynamic Properties of Calcium Perchlorate, Zh. Neorg. Khim., 1987, vol. 32, no. 4, pp. 859–861.

    Google Scholar 

  87. Zalukaev, V.L., Gorbunov, V.E., Sharpataya, G.A., et al., Low-Temperature Heat Capacity and Thermodynamic Properties of Barium Perchlorate, Zh. Neorg. Khim., 1987, vol. 32, no. 3, pp. 806–808.

    Google Scholar 

  88. Gavrichev, K.S., Sharpataya, G.A., Gorbunov, V.E., et al., Heat Capacity and Thermodynamic Properties of α-and β-Zn(ClO4)2, Neorg. Mater., 1999, vol. 35, no. 10, pp. 1259–1277 [Inorg. Mater. (Engl. Transl.), vol. 35, no. 10, pp. 1075–1092].

    Google Scholar 

  89. Gorbunov, V.E., Sharpataya, G.A., Gavrichev, K.S., and Nikitina, Z.K., Heat Capacity and Phase Transition of Cadmium Perchlorate, Zh. Neorg. Khim., 1990, vol. 35, no. 3, pp. 729–731.

    Google Scholar 

  90. Gorbunov, V.E., Gavrichev, K.S., Sharpataya, G.A., and Nikitina, Z.K., Heat Capacity of Lead Perchlorate from 8 to 320 K, Zh. Neorg. Khim., 1994, vol. 39, no. 3, pp. 396–397.

    Google Scholar 

  91. Dobrynina, T.A., Akhapkina, N.A., and Rosolovskii, V.Ya., Phase Diagram of the System Calcium Perchlorate- Water, Zh. Neorg. Khim., 1984, vol. 29, no. 7, p. 1818.

    Google Scholar 

  92. Nikitina, Z.K., Chuprakov, Yu.V., and Rosolovskii, V.Ya., Anhydrous Zinc Perchlorate and Perchloratozincates, Zh. Neorg. Khim., 1986, vol. 31, no. 3, pp. 691–697.

    Google Scholar 

  93. Chudinova, L.I., Zinc Perchlorate, Zh. Neorg. Khim., 1965, vol. 10, no. 6, pp. 1300–1306.

    Google Scholar 

  94. Krivtsov, N.V., Nikitina, Z.K., and Rosolovskii, V.Ya., Lead Perchlorate and Its Hydrates, Zh. Neorg. Khim., 1987, vol. 32, no. 11, p. 2691.

    Google Scholar 

  95. Nikitina, Z.K. and Rosolovskii, V.Ya., Anhydrous Cadmium Perchlorate and Alkali and Tetrabutylammonium Perchloratocadmates, Zh. Neorg. Khim., 1986, vol. 31, no. 6, p. 1447.

    Google Scholar 

  96. Einstein, A., Die Planckishe Theorie der Strahlung und die Theorie der spezifischen Wärmen, Ann. Phys., 1907, vol. 22, p. 180.

    Google Scholar 

  97. Debye, P., Zur Theorie der spezifischen Wärmen, Ann. Phys., 1912, vol. 39, no. 4, p. 789.

    Google Scholar 

  98. Born, M. and Karman, T., Vibrations in Space Gratings (Molecular Frequencies), Z. Phys., 1912, vol. 13, pp. 297–309.

    Google Scholar 

  99. Tarasov, V.V., Theory of Heat Capacity of Chain and Layer Structures, Zh. Fiz. Khim., 1950, vol. 24, no. 1, pp. 111–128.

    Google Scholar 

  100. Born, M. and Karman, T., Theory of Specific Heats, Z. Phys., 1913, vol. 14, pp. 65–91.

    Google Scholar 

  101. Blackman, M., Specific Heat of Solids, in Handbuch der Physik, Berlin: Springer, 1955, vol. 7, part 1, p. 325.

    Google Scholar 

  102. Blackman, M., Contributions to the Theory of Specific Heat: III. On the Existence of Pseudo-T 3 Regions in the Specific Heat Curve of a Crystal, Proc. R. Soc. London, A, 1935, vol. 149, pp. 117–125.

    Google Scholar 

  103. Stepanov, P.E., Heat Capacity of Crystals with Strong Axial Elastic Anisotropy, Zh. Fiz. Khim., 1952, vol. 26, no. 11, pp. 1642–1658.

    Google Scholar 

  104. Westrum, E.F. and Komada, N., Progress in Modeling Heat Capacity versus Temperature Morphology, Thermochim. Acta, 1986, vol. 109, pp. 11–28.

    Google Scholar 

  105. Kieffer, S.W., Thermodynamics and Lattice Vibrations of Minerals: 3. Lattice Dynamics and an Approximation for Minerals with Application to Simple Substances and Framework Silicates, Rev. Geophys. Space Phys., 1979, vol. 17, no. 1, pp. 35–59.

    Google Scholar 

  106. Lifshits, I.M., Low-Temperature Heat Capacity of Thin Films and Needles, Zh. Eksp. Teor. Fiz., 1952, vol. 22, p. 471.

    Google Scholar 

  107. Lifshits, I.M., Determination of the Energy Spectrum and Heat Capacity of Bose Systems, Zh. Eksp. Teor. Fiz., 1954, vol. 26, no. 5, pp. 551–556.

    Google Scholar 

  108. Korshunov, V.A. and Tanana, V.N., Determination of the Phonon Density of States from Thermodynamic Functions of Crystals: Noble Metals, Fiz. Met. Metalloved., 1976, vol. 42, no. 3, pp. 455–463.

    Google Scholar 

  109. Korshunov, V.A. and Tanana, V.N., Determination of the Phonon Density of States from Thermodynamic Functions of Crystals, Dokl. Akad. Nauk SSSR, 1976, vol. 231, no. 4, pp. 845–848.

    Google Scholar 

  110. Sakamoto, Y., Thermodynamic Functions of the Crystals of PbSO4, BaSO4, SrSO4, and CaSO4, J. Sci. Hiroshima Univ., A, 1954, vol. 17, no. 3, pp. 407–411.

    Google Scholar 

  111. Sakamoto, Y., Expression of the Thermodynamic Functions for the Complex Ionic Crystals, J. Sci. Hiroshima Univ., A, 1954, vol. 17, no. 3, pp. 387–395.

    Google Scholar 

  112. Sakamoto, Y., Analytic Treatment of the C p-T Relation for the Crystals of BaSO4, CaSO4, PbSO4, and SrSO4, J. Sci. Hiroshima Univ., A, 1954, vol. 17, no. 3, pp. 397–405.

    Google Scholar 

  113. Sakamoto, Y., Analysis of the C p-T Relation for the Crystals of NH4Cl, J. Sci. Hiroshima Univ., A, 1954, vol. 18, no. 1, pp. 95–111.

    Google Scholar 

  114. Godnev, I.N. and Konnova, V.V., Evaluation of C p - C V for Molecular Crystals, Zh. Fiz. Khim., 1971, vol. 45, no. 5, pp. 1078–1080.

    Google Scholar 

  115. Gorbunov, V.E., Gavrichev, K.S., and Sharpataya, G.A., Librational Frequencies in Alkali Hydridoaluminates, Zh. Neorg. Khim., 1988, vol. 33, no. 10, pp. 2678–2681.

    Google Scholar 

  116. Semenenko, K.N., Chavgun, A.N., Polyakova, V.B., et al., Spectroscopic and X-ray Diffraction Studies of Univalent-Cation Hydridoaluminates, Zh. Neorg. Khim., 1970, vol. 15, no. 11, pp. 2890–2894.

    Google Scholar 

  117. Kurbakova, A.P., Leites, L.A., Gavrilenko, V.V., et al., Vibrational Spectra of Complex Gallohydrides and Comparative Study of MH4 Ions (M - B, Al, Ga), Spectrochim. Acta, Part A, 1975, vol. 31, pp. 281–286.

    Google Scholar 

  118. Adiks, T.G., Gavrilenko, V.V., Zakharkin, M.I., and Ignat'eva, L.A., IR Spectra of Alkali Metal Aluminum Hydrides, Zh. Prikl. Spektrosk., 1967, vol. 6, pp. 806–811.

    Google Scholar 

  119. Temme, F.P. and Waddington, T.C., Libration Motion in Sodium and Lithium Aluminum Hydrides, Studied by Inelastic Neutron Scattering, J. Chem. Soc., Faraday Trans. 2, 1973, vol. 69, pp. 783–790.

    Google Scholar 

  120. Tomkinson, J. and Waddington, T.C., Libration Motion in Potassium Aluminum Hydride, Studied by Inelastic Neutron Scattering, J. Chem. Soc., Faraday Trans. 2, 1975, vol. 71, pp. 2065–2068.

    Google Scholar 

  121. Náray-Szabó, I., Kristalykemia, Budapest: Akadémiai Kiadó, 1969. Translated under the title Neorganicheskaya kristallokhimiya, Budapest: Hungarian Acad. Sci., 1969, pp. 332, 448.

    Google Scholar 

  122. Herzberg, G., Molecular Spectra and Molecular Structure, vol. 2: Infrared and Raman Spectra of Polyatomic Molecules, New York: Van Nostrand Reinhold, 1945. Translated under the title Kolebatel'nye i vrashchatel'nye spektry mnogoatomnykh molekul, Moscow: Inostrannaya Literatura, 1949.

    Google Scholar 

  123. Landolt, H. and Börnstein, R., Physikalische-chemische Tabellen, vol. 1: Atom-und Molekularphysik, part 2: Molekeln I, Berlin: Springer, 1951, p. 259.

    Google Scholar 

  124. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986. Translated under the title IK-spektry i spektry KR neorganicheskikh i koordinatsionnykh soedinenii, Moscow: Mir, 1991.

    Google Scholar 

  125. Bokii, G.B., Kristallokhimiya (Crystal Chemistry), Moscow: Nauka, 1971.

    Google Scholar 

  126. Anderson, C.T., The Heat Capacity of Lead Sulfate at Low Temperatures, J. Am. Chem. Soc., 1936, vol. 58, no. 10, p. 567.

    Google Scholar 

  127. Gutowsky, S., Pake, C.E., and Bensohn, R., Structural Investigation by Means of Nuclear Magnetization: III. Ammonium Halides, J. Chem. Phys., 1954, vol. 22, pp. 645–650.

    Google Scholar 

  128. Koehler, S. and Dennison, D.M., Hindered Rotation in Methyl Alcohol, Phys. Rev., 1940, vol. 57, pp. 1006–1021.

    Google Scholar 

  129. Eyring, E., Walter, J., and Kimball, G.E., Quantum Chemistry, New York: Wiley, 1957, p. 157.

    Google Scholar 

  130. Das, T.P., Tunneling through High Periodic Barrier: II. Application to Nuclear Magnetic Resonance in Solids, J. Chem. Phys., 1957, vol. 27, pp. 763–781.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrichev, K.S. Heat Capacity and Thermodynamic Properties of Inorganic Compounds Containing Tetrahedral Anions (BH- 4, AlH- 4, GaH- 4, BF- 4, ClO- 4, BrO- 4, and IO- 4). Inorganic Materials 39 (Suppl 2), S89–S112 (2003). https://doi.org/10.1023/B:INMA.0000008888.25890.51

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INMA.0000008888.25890.51

Keywords

Navigation