Skip to main content
Log in

Dissipative Systems and Objective Description: Quantum Brownian Motion as an Example

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A structure of generator of a quantum dynamical semigroup for the dynamics of a test particle interacting through collisions with the environment is considered, which has been obtained from a microphysical model. The related master-equation is shown to go over to a Fokker–Planck equation for the description of Brownian motion at quantum level in the long wavelength limit. The structure of this Fokker–Planck equation is expressed in this paper in terms of superoperators, giving explicit expressions for the coefficient of diffusion in momentum in correspondence with two cases of interest for the interaction potential. This Fokker–Planck equation gives an example of a physically motivated generator of quantum dynamical semigroup, which serves as a starting point for the theory of measurement continuous in time, allowing for the introduction of trajectories in quantum mechanics. This theory has in fact already been applied to the problem of Brownian motion referring to similar phenomenological structures obtained only on the basis of mathematical requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Alicki, R. (2002). Dynamics of dissipation. In Lecture Notes in Physics, Vol. 597, P. Garbaczewski, and R. Olkiewicz, Eds.,Springer, Berlin, p. 239.

    Google Scholar 

  • Alicki R. and K. Lendi, (1987). Quantum dynamical semigroups and applications. In Lecture Notes in Physics, Vol. 286, Springer, Berlin.

    Google Scholar 

  • Barchielli, A. (1983). Nuovo Cimento B 74, 113.

    Google Scholar 

  • Barchielli, A. (1986). Physical Review A 34, 1642.

    Google Scholar 

  • Barchielli, A., Lanz, L., and Prosperi, G. M. (1982). Nuovo Cimento B 72, 79.

    Google Scholar 

  • Barchielli, A., Lanz, L., and Prosperi, G. M. (1983). Foundations of Physics 13, 779.

    Google Scholar 

  • Barchielli, A. and Lupieri, G. (1985). Journal of Mathematical Physics 26, 2222.

    Google Scholar 

  • Bouwmeester, D., Ekert, A., and Zeilinger, A. (eds.). (2000). The Physics of Quantum Information, Springer, Berlin.

    Google Scholar 

  • Brenig, W. (1989). Statistical Theory of Heat, Springer, Berlin.

    Google Scholar 

  • Breuer, H. P. and Petruccione, F. (2002). The Theory of Open Quantum Systems, Oxford University Press, Oxford.

    Google Scholar 

  • Busch, P., Grabowski, M., and Lahti, P. J. (1997). Operational quantum physics. In Lecture Notes in Physics, 2edn., Springer, Berlin, Vol m31.

    Google Scholar 

  • Busch, P., Lahti, P. J., and Mittelstaedt, P. (1991). The quantum theory of measurement and not Operational quantum physics. In Lecture Notes in Physics, Vol. m2, Springer, Berlin.

    Google Scholar 

  • Davies, E. B. (1969). Communications in Mathematical Physics 15, 227.

    Google Scholar 

  • Davies, E. B. (1970). Communications in Mathematical Physics 19, 83.

    Google Scholar 

  • Davies, E. B. (1971). Communications in Mathematical Physics 22, 51.

    Google Scholar 

  • Gorini, V., Frigerio, A., Verri, M., Kossakowski A., and Sudarshan, E. C. G. (1978). Reports on Mathematical Physics 13, 149.

    Google Scholar 

  • Griffin, A. (1993). Excitations in a Bose-condensed Liquid, Cambridge University Press, Cambridge.

    Google Scholar 

  • Haag, R. (2001). Local Quantum Physics, Springer, Berlin.

    Google Scholar 

  • Holevo, A. S. (1988). Lecture Notes in Mathematics, Vol. 1303, Springer, Berlin, p. 128.

    Google Scholar 

  • Holevo, A. S. (1989). Lecture Notes in Mathematics, Vol. 1396, Springer, Berlin, p. 229.

    Google Scholar 

  • Holevo, A. S. (1993). Reports on Mathematical Physics 32, 211.

    Google Scholar 

  • Holevo, A. S. (1993). Reports on Mathematical Physics 33, 95.

    Google Scholar 

  • Holevo, A. S. (1995). Izvestija RAN, Serija Matematika 59, 205.

    Google Scholar 

  • Holevo, A. S. (1996). Journal of Mathematical Physics 37, 1812.

    Google Scholar 

  • Holevo, A. S. (1998). Irreversibility and causality. In Lecture Notes in Physics, Vol. 504, A. Bohm, H.-D. Doebner, and P. Kielanowski, eds., Springer, Berlin, p. 67.

    Google Scholar 

  • Holevo, A. S. (2001). Statistical structure of quantum theory. In Lecture Notes in Physics, Vol. m67, Springer, Berlin.

    Google Scholar 

  • Isar, A. (1999). Fortschritte der Physik 47, 855.

    Google Scholar 

  • Joos, E., Zeh, H. D., Kiefer, C., Giulini, D., Kupsch, J., and Stamatescu, I.-O. (2003). Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn., Springer, Berlin.

    Google Scholar 

  • Kohen, D., Marston C. C., and Tannor, D. J. (1997). Journal of Chemical Physics 107, 5236.

    Google Scholar 

  • Kramers, H. A. (1940). Physica 7, 284.

    Google Scholar 

  • Kraus, K. (1983). States, effects and operations. In Lecture Notes in Physics, Vol. 190, Springer, Berlin.

    Google Scholar 

  • Lanz, L. (1994). International Journal of Theoretical Physics 33, 19.

    Google Scholar 

  • Lanz, L., Melsheimer, O., and Vacchini, B. (2000a). Journal of Modern Optics 47, 2165.

    Google Scholar 

  • Lanz, L., Melsheimer, O., and Vacchini, B. (2000b). Reports on Mathematical Physics 46, 191.

    Google Scholar 

  • Lanz, L., Melsheimer, O., and Vacchini, B. (2002). Reports on Mathematical Physics 49, 279.

    Google Scholar 

  • Lanz L. and Vacchini, B. (1997a). International Journal of Theoretical Physics 36, 67.

    Google Scholar 

  • Lanz L. and Vacchini, B. (1997b). Physical Review A 56, 4826.

    Google Scholar 

  • Lanz L. and Vacchini, B. (2002). International Journal of Modern Physics A 17, 435.

    Google Scholar 

  • Lindblad, G. (1976a). Reports on Mathematical Physics 10, 393.

    Google Scholar 

  • Lindblad, G. (1976b). Communications in Mathematical Physics 48, 119.

    Google Scholar 

  • Lindblad, G. (1998). Journal of Mathematical Physics 39, 2763.

    Google Scholar 

  • Lovesey, S. W. (1984). Theory of Neutron Scattering from Condensed Matter, Clarendon Press, Oxford.

    Google Scholar 

  • Ludwig, G. (1983). Foundations of Quantum Mechanics, Springer, Berlin.

    Google Scholar 

  • Ludwig, G. (1985). An Axiomatic Basis for Quantum Mechanics, Springer, Berlin.

    Google Scholar 

  • Lupieri, G. (1985). Journal of Mathmatical Physics 24, 2329.

    Google Scholar 

  • O'Connell, R. F. (2001). Physical Review Letters 87, 028901.

    Google Scholar 

  • Pathria, R. K. (1996). Statistical Mechanics, Butterworth-Heinemann, Oxford.

    Google Scholar 

  • Risken, H. (1989). The Fokker-Planck Equation, 2nd edn., Springer, Berlin.

    Google Scholar 

  • Săndulescu, A. and Scutaru, H. (1987). Annals of Physics, New York, 173, 277.

    Google Scholar 

  • Spohn, H. (1980). Review of Modern Physics 53, 569.

    Google Scholar 

  • Vacchini, B. (2000a). International Journal of Theoretical Physics 39, 927.

    Google Scholar 

  • Vacchini, B. (2000b). Physical Review Letters 84, 1374.

    Google Scholar 

  • Vacchini, B. (2001a). Physical Review Letters 87, 028902.

    Google Scholar 

  • Vacchini, B. (2001b). Physical Review E 63, 066115.

    Google Scholar 

  • Vacchini, B. (2001c). Journal of Mathematical Physics 42, 4291.

    Google Scholar 

  • Vacchini, B. (2001). Naturforsch. Z. a 56, 230.

    Google Scholar 

  • Vacchini, B. (2002a). Physical Review E 66, 027107.

    Google Scholar 

  • Vacchini, B. (2002b). Journal of Mathematical Physics 43, 5446.

    Google Scholar 

  • Van Hove, L. (1954). Physical Review 95, 249.

    Google Scholar 

  • Van Kampen, N. G. (1981). Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vacchini, B. Dissipative Systems and Objective Description: Quantum Brownian Motion as an Example. International Journal of Theoretical Physics 43, 1515–1525 (2004). https://doi.org/10.1023/B:IJTP.0000048635.55359.ae

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJTP.0000048635.55359.ae

Navigation