Skip to main content
Log in

An entropy production based method for determining the position diffusion’s coefficient of a quantum Brownian motion

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Quantum Brownian motion of a harmonic oscillator in the Markovian approximation is described by the respective Caldeira–Leggett master equation. This master equation can be brought into Lindblad form by adding a position diffusion term to it. The coefficient of this term is either customarily taken to be the lower bound dictated by the Dekker inequality or determined by more detailed derivations on the linearly damped quantum harmonic oscillator. In this paper, we explore the theoretical possibilities of determining the position diffusion term’s coefficient by analyzing the entropy production of the master equation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.O. Caldeira, A.J. Leggett, Physica 121A, 587 (1983)

    Article  ADS  Google Scholar 

  2. U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1999)

  3. H. Grabert, P. Schramm, G.-L. Ingold, Phys. Rep. 168, 115 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  4. W.G. Unruh, W.H. Zurek, Phys. Rev. D 40, 1071 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  5. B.L. Hu, J.P. Paz, Y. Zhang, Phys. Rev. D 45, 2843 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. C.H. Fleming, A. Roura, B.L. Hu, Ann. Phys. 326, 1207 (2011)

    Article  ADS  Google Scholar 

  7. V. Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976)

    Google Scholar 

  8. G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  Google Scholar 

  9. R.P. Feynman, F.L. Vernon, Ann. Phys. (USA) 24, 118 (1963)

    Article  ADS  Google Scholar 

  10. L. Diósi, Europhys. Lett. 22, 1 (1993)

    Article  ADS  Google Scholar 

  11. J.J. Halliwell, A. Zoupas, Phys. Rev. D 52, 7294 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  12. J.J. Halliwell, A. Zoupas, Phys. Rev. D 55, 4697 (1995)

    Article  ADS  Google Scholar 

  13. I.R. Senitzky, Phys. Rev. 119, 670 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  14. H. Dekker, Phys. Rev. A 16, 2126 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  15. H. Dekker, M.C. Valsakumar, Phys. Lett. 104A, 67 (1984)

    Article  ADS  Google Scholar 

  16. L. Diósi, Physica A 199, 517 (1993)

    Article  ADS  Google Scholar 

  17. H. Dekker, Physica 95A, 311 (1979)

    Article  ADS  Google Scholar 

  18. H. Spohn, J. Math. Phys. 19, 1227 (1978)

    Google Scholar 

  19. I. Prigogine, Science 201, 777 (1978)

    Article  ADS  Google Scholar 

  20. L.M. Martyushev, V.D. Seleznev, Phys. Rep. 426, 1 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. P. Marian, T.A. Marian, H. Scutaru, Phys. Rev. A 69, 022104 (2004)

    Article  ADS  Google Scholar 

  22. M. Ohya, D. Petz, Quantum Entropy and Its Use (Springer-Verlag, New York, 1993)

  23. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

  24. A. Sandulescu, H. Scutaru, Ann. Phys. (N.Y.) 173, 277 (1987)

    Article  ADS  Google Scholar 

  25. G. Lindblad, Commun. Math. Phys. 40, 147 (1975)

    Article  ADS  Google Scholar 

  26. A. Uhlmann, Commun. Math. Phys. 54, 21 (1977)

    Article  ADS  Google Scholar 

  27. K. Sato, Lévy Processes and Infinitely Divisible Distributions (Cambridge University Press, Cambridge, 1999)

  28. S.M. Barnett, J.D. Cresser, Phys. Rev. A72, 022107 (2005)

    Article  ADS  Google Scholar 

  29. A. Isar, A. Sandulescu, H. Scutaru, E. Stefanescu, W. Scheid, Int. J. Mod. Phys. E 3, 635 (1994)

    Article  ADS  Google Scholar 

  30. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  31. B. Jäck, J. Senkpiel, M. Etzkorn, J. Ankerhold, C.R. Ast, K. Kern, Phys. Rev. Lett. 119, 147702 (2017)

    Article  ADS  Google Scholar 

  32. W. Marshall, C. Simon, R. Penrose, D. Bouwmeester, Phys. Rev. Lett. 91, 130401 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  33. J.Z. Bernád, L. Diósi, T. Geszti, Phys. Rev. Lett. 97, 250404 (2006)

    Article  ADS  Google Scholar 

  34. E. Joos, H.D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, I.-O. Stamatescu, in Decoherence and the Appearance of a Classical World in Quantum Theory (Springer-Verlag, Berlin, 1996), Appendix A2

  35. S. Roman, The Umbral Calculus (Academic Press, New York, 1984)

  36. E. Joos, H.D. Zeh, Z. Phys. B 59, 223 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Z. Bernád.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernád, J.Z., Homa, G. & Csirik, M.A. An entropy production based method for determining the position diffusion’s coefficient of a quantum Brownian motion. Eur. Phys. J. D 72, 212 (2018). https://doi.org/10.1140/epjd/e2018-90476-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90476-0

Keywords

Navigation