Skip to main content
Log in

The Use of Scanning Transitiometry to Investigate Thermodynamic Properties of Polymeric Systems over Extended T and p Ranges

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Scanning transitiometry is a newly developed technique in which one of the independent variables (p,V, or T) is scanned in the working cell of a very sensitive calorimeter while the other independent variable is kept constant. The change of the dependent variable is recorded simultaneously with the thermal effect associated with the process or the system under investigation. In the case of non-reacting systems which remain in a homogeneous state, both the mechanical and thermal outputs thus obtained give straightforward access to pairs of thermomechanical coefficients: α p and κ T , β V and κ T , C p and α p , C V and β V , depending on the pair of selected independent variables. When the system or the material sample goes through a chemical reaction or a phase change, the recorded information yields the corresponding heat and pVT characteristics. The working cell may also house an optical fiber probe for spectrophotometric in situ readings from UV to NIR, as well as injection and stirring devices permitting investigation of reacting systems. The actual operating ranges of current scanning transitiometers are 173 K<T<673 K and 0.1<p<200 MPa (or 400 MPa). With such equipment, bulk properties, phase transitions, and reactions (i.e., polymerization) can be advantageously studied. Selected examples, all dealing with polymeric systems (including biopolymers), are illustrated, namely, measurements of thermomechanical coefficients (thermal expansion, compressibility), characterization of transitions (fusion, crystallization, glass transition, gelatinization) and particle synthesis. All examples show that scanning transitiometry is a versatile technique that can be used to fully characterize thermophysical properties as well as the thermodynamic behavior of a large variety of systems and materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. H. Sperling, Introduction to Physical Polymer Science, 3rd edn. (Wiley, New York, 2001), p. xxix.

    Google Scholar 

  2. S. L. Randzio, Thermochim. Acta 355:107(2000).

    Google Scholar 

  3. P. Rollet and R. Bouaziz, L'analyse thermique, Tome 1: Les changements de phase (Gautier-Villars, Paris, 1972), p. 3577.

    Google Scholar 

  4. G. W. H. HÖhne, Thermochim. Acta 332:115(1999).

    Google Scholar 

  5. Z. Zhang and Y. P. Handa, Macromolecules 30:8505(1997).

    Google Scholar 

  6. S. L. Randzio, J. Therm. Anal. Cal. 57:165(1999).

    Google Scholar 

  7. S. L. Randzio, J.-P. E. Grolier, and J. R. Quint, High Temp.-High Press. 30:645(1998).

    Google Scholar 

  8. P. Pruzan, L. TerMinassian, and A. Soulard, High-Pressure Science and Technology 1:368(1979).

    Google Scholar 

  9. S. L. Randzio, J.-P. E. Grolier, and J. Quint, Rev. Sci. Instrum. 65:960(1994).

    Google Scholar 

  10. Rodier-Renaud, S. L. Randzio, J.-P. E. Grolier, and J. R. Quint, J. Polym. Sci. Part B: Polym. Phys. 34:1229(1996).

    Google Scholar 

  11. S. L. Randzio, Pure Appl. Chem. 63:1409(1991).

    Google Scholar 

  12. P. Ehrenfest, Proc. Kon. Akad. Wetensch. 36:153(1933).

    Google Scholar 

  13. S. L. Randzio, Chem. Soc. Rev. 25:383(1996).

    Google Scholar 

  14. S. L. Randzio, Thermochim. Acta 300:29(1997).

    Google Scholar 

  15. S. L. Randzio, J. Therm. Anal. 48:573(1997).

    Google Scholar 

  16. S. L. Randzio and J.-P. E. Grolier, Anal. Chem. 70:2327(1998).

    Google Scholar 

  17. M. Loro, J. S. Lim, and M. A. McHugh, J. Phys. Chem. B 103:2818(1999).

    Google Scholar 

  18. S. L. Randzio, Ch. Stachowiak, and J.-P. E. Grolier, J. Chem. Thermodyn. 35:639(2003).

    Google Scholar 

  19. P. Rubens, J. Snauwaert, K. Heremans, and R. Stute, Carbohydtrate Polym. 39:231(1999).

    Google Scholar 

  20. P. Rubens and K. Heremans, Biopolymers 54:524(2000).

    Google Scholar 

  21. G. Weber and H. D. Drickamer, Q. Rev. Biophys. 16:89(1983).

    Google Scholar 

  22. S. L. Randzio, I. Flis-Kabulska, and J.-P. E. Grolier, Macromolecules 35:8852(2002).

    Google Scholar 

  23. M. Shen, W. N. Hansen, and P. C. Romo, J. Chem. Phys. 51:425(1969).

    Google Scholar 

  24. D. J. Pastine, J. Appl. Phys. 41:5085(1970).

    Google Scholar 

  25. D. J. Pastine, J. Chem. Phys. 49:3012(1968).

    Google Scholar 

  26. F. Dan and C. Vasiliu-Oprea, Colloid Polym. Sci. 276:483(1998).

    Google Scholar 

  27. H. Sekiguchi, in Ring-Opening Polymerization, Vol. 2, K. J. Iving and T. Saegusa, eds. (Elsevier, London, 1984), p. 833.

    Google Scholar 

  28. J. Stehlicek and J. Sebenda, Eur. Polym. J. 22:769(1986).

    Google Scholar 

  29. F. Dan and J.-P. E. Grolier, Setaram News 7:i3-i4 (2002).

    Google Scholar 

  30. S. L. Randzio, Thermochim. Acta 398:75(2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. E. Grolier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grolier, JP.E., Dan, F., Boyer, S.A.E. et al. The Use of Scanning Transitiometry to Investigate Thermodynamic Properties of Polymeric Systems over Extended T and p Ranges. International Journal of Thermophysics 25, 297–319 (2004). https://doi.org/10.1023/B:IJOT.0000028469.17288.de

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJOT.0000028469.17288.de

Navigation