Skip to main content

Isoconversional Kinetics by Fast Scanning Calorimetry

  • Chapter
  • First Online:
Fast Scanning Calorimetry

Abstract

Over the past decade the isoconversional methodology has become a major tool for exploring the kinetics of chemical and physical process. This chapter demonstrates that the application area of the isoconversional kinetics expands dramatically when the methodology is combined with fast scanning calorimetry (FSC). FSC allows one to perform reliable kinetic studies of the processes that occur too fast to be measured by regular DSC, to extend significantly the temperature range of the studies, and to accomplish various short-lived metastable states. Examples considered in this chapter include the notoriously fast crystallization polytetrafluoroethylene (PTFE) melt and atypical gelation of a gelatin solution that occurs on heating. Isoconversional analysis of FSC data on PTFE crystallization has revealed a change in the process mechanism that has never been detected by other techniques. It has also been discovered that at the smallest and largest supercooling the process follows the same crystallization mechanism. For a gelatin solution, it is possible to cool it fast enough to avoid gelation and initiate the process on slower heating of the supercooled solution. Isoconversional analysis applied to FSC data on the atypical gelation has revealed a positive temperature coefficient (effective activation energy), whereas the regular gelation on cooling demonstrates a negative coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun 27:1515

    Article  Google Scholar 

  2. Vyazovkin S (2008) In: Brown ME, Gallagher PK (eds) The handbook of thermal analysis & calorimetry, vol. 5: recent advances, techniques and applications, Elsevier, Amsterdam, pp 503–538

    Google Scholar 

  3. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1

    Article  Google Scholar 

  4. Vyazovkin S (2015) Isoconversional kinetics of thermally stimulated processes. Springer, Berlin

    Book  Google Scholar 

  5. Prime RB (1981) In: Turi EA (ed) Thermal characterization of polymeric materials. Academic Press, New York, pp 435–569

    Google Scholar 

  6. Sbirrazzuoli N, Vincent L, Bouillard J, Élégant L (1999) Isothermal and nonisothermal kinetics: when mechanistic information available. J Therm Anal Calorim 56(2):783

    Article  Google Scholar 

  7. Cai H, Li P, Sui G, Yu Y, Li G, Yang X, Ryu S (2008) Curing kinetics study of epoxy resin/flexible amine toughness systems by dynamic and isothermal DSC. Thermochim Acta 473:101

    Article  Google Scholar 

  8. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Josep Suñol J (2014) ICTAC Kinetics Committee recommendations for collecting thermal analysis data for kinetic computations. Thermochim Acta 590:1

    Article  Google Scholar 

  9. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Japan 38:1881

    Article  Google Scholar 

  10. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B Polym Lett 4:323

    Article  Google Scholar 

  11. Flynn JH, Wall LA (1966) General treatment of the thermogravimetry of polymers. J Res Nat Bur Standards Part A 70:487

    Article  Google Scholar 

  12. Sbirrazzuoli N, Vincent L, Vyazovkin S (2000) Comparison of several computational procedures for evaluating the kinetics of thermally stimulated condensed phase reactions. Chemom Intell Lab Syst 54(1):53

    Article  Google Scholar 

  13. Atkins P, de Paula J (2010) Physical chemistry, 9th edn. W.H. Freeman, New York

    Google Scholar 

  14. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C 6:183

    Article  Google Scholar 

  15. Sbirrazzuoli N (2013) Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way. Thermochim Acta 564:59

    Article  Google Scholar 

  16. Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163

    Article  Google Scholar 

  17. Sbirrazzuoli N (2007) Is the Friedman method applicable to transformations with temperature dependent reaction heat? Macromol Chem Phys 208:1592

    Article  Google Scholar 

  18. Vyazovkin S (1997) Evaluation of the activation energy of thermally stimulated solid state reactions under an arbitrary variation of the temperature. J Comput Chem 18:393

    Article  Google Scholar 

  19. Vyazovkin S (2001) Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem 22:178

    Article  Google Scholar 

  20. Hoffman JD, Davis GT, Lauritzen JI (1976) In: Hannay NB (ed) Treatise on solid state chemistry, vol 3, Plenum, New York, pp 497–614

    Google Scholar 

  21. Lauritzen JI, Hoffman JD (1960) Theory of formation of polymer crystals with folded chains in dilute solution. J Res Nat Bur Standards 64A:73

    Article  Google Scholar 

  22. Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys 17:71

    Article  Google Scholar 

  23. Muthukumar M (2004) Nucleation in polymer crystallization. Advances in Chemical Physics, vol 128, Wiley, New York, pp 1–63

    Google Scholar 

  24. Vyazovkin S, Sbirrazzuoli N (2004) Isoconversional approach to evaluating the Hoffman-Lauritzen parameters (U * and K g ) from the overall rates of nonisothermal melt crystallization. Macromol Rapid Commun 25(6):733

    Article  Google Scholar 

  25. Vyazovkin S, Dranca I (2006) Isoconversional analysis of combined melt and glass crystallization data. Macromol Chem Phys 207(1):20

    Article  Google Scholar 

  26. Vyazovkin S, Sbirrazzuoli N (2002) Isoconversional analysis of the nonisothermal crystallization of a polymer melt. Macromol Rapid Commun 23(13):766

    Article  Google Scholar 

  27. Bosq N, Guigo N, Persello J, Sbirrazzuoli N (2014) Melt and glass crystallization of PDMS and PDMS silica nanocomposites. Phys Chem Chem Phys 16(17):7830

    Article  Google Scholar 

  28. Codou A, Guigo N, van Berkel J, de Jong E, Sbirrazzuoli N (2014) Nonisothermal crystallization kinetics of biobased poly(ethylene 2,5-furandicarboxylate) synthesized via direct esterification process. Macromol Chem Phys 215:2065

    Article  Google Scholar 

  29. Vyazovkin S, Stone J, Sbirrazzuoli N (2005) Hoffman-Lauritzen parameters for nonisothermal crystallization of poly(ethylene terephthalate) and poly(ethylene oxide) melts. J Therm Anal Calorim 80:177

    Article  Google Scholar 

  30. Achilias DS, Papageorgiou GZ, Karayannidis GP (2005) Evaluation of the isoconversional approach to estimating the Hoffman-Lauritzen parameters from the overall rates of non-isothermal crystallization of polymers. Macromol Chem Phys 206:1511

    Article  Google Scholar 

  31. Vassiliou AA, Papageorgiou GZ, Achilias DS, Bikiaris DN (2007) Non-isothermal crystallisation kinetics of in situ prepared poly(e-caprolactone)/surface-treated SiO2 nanocomposites. Macromol Chem Phys 208:364

    Article  Google Scholar 

  32. Papageorgiou GZ, Achilias DS, Bikiaris DN (2007) Crystallization kinetics of biodegradable poly(butylene succinate) under isothermal and non-isothermal conditions. Macromol Chem Phys 208:1250

    Article  Google Scholar 

  33. Bosq N, Guigo N, Zhuravlev E, Sbirrazzuoli N (2013) Non-isothermal crystallization of polytetrafluoroethylene in wide range of cooling rates. J Phys Chem B 117:3407

    Article  Google Scholar 

  34. Bosq N (2013) Nanocomposites à matrice polymère : influence de silices nanostructurées sur la cristallisation, la transition vitreuse et les propriétés thermomécaniques, PhD thesis, Université Nice Sophia Antipolis, Nice, 19 décembre 2013

    Google Scholar 

  35. Wang XQ, Chen DR, Han JC, Du SY (2002) Crystallization behavior of polytetrafluoroethylene (PTFE). J Appl Polym Sci 83:990

    Article  Google Scholar 

  36. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochim Acta 505:14

    Article  Google Scholar 

  37. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta 505:1

    Article  Google Scholar 

  38. Godard P, Biebuyck JJ, Daumerie M, Naveau H, Mercier JP (1978) Crystallization and melting of aqueous gelatin. J Polym Sci Polym Phys Ed 16:1817

    Article  Google Scholar 

  39. Domszy RC, Alamo R, Edwards CO, Mandelkern L (1986) Thermoreversible gelation and crystallization of homopolymers and copolymers. Macromolecules 19:310

    Article  Google Scholar 

  40. Boedtker H, Doty P (1954) A study of gelatin molecules, aggregates and gels. J Phys Chem 58:968

    Article  Google Scholar 

  41. Chen K, Vyazovkin S (2009) Temperature dependence of sol-gel conversion kinetics in gelatin-water system. Macromol Biosci 9(4):383

    Article  Google Scholar 

  42. Guigo N, Sbirrazzuoli N, Vyazovkin S (2012) Gelation on heating of supercooled gelatin solutions. Macromol Rapid Commun 33(8):698

    Article  Google Scholar 

  43. Guigo N, Sbirrazzuoli N, Vyazovkin S (2012) Atypical gelation in gelatin solutions probed by ultra-fast calorimetry. (Cover-featured article). Soft Matter 8(27):7116

    Article  Google Scholar 

  44. Malik S, Jana T, Nandi AK (2001) Thermoreversible gelation of regioregular poly(3-hexylthiophene) in xylene. Macromolecules 34:275

    Article  Google Scholar 

  45. Dikshit AK, Nandi AK (2002) Gelation mechanism of thermoreversible gels of poly(vinylidene fluoride) and its blends with poly(methyl acrylate) in diethyl azelate. Langmuir 17:3607

    Article  Google Scholar 

  46. Schawe JEK (2015) Measurement of the thermal glass transition of polystyrene in a cooling rate range of more than six decades. Thermochim Acta 603:128

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Sbirrazzuoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sbirrazzuoli, N., Guigo, N., Vyazovkin, S. (2016). Isoconversional Kinetics by Fast Scanning Calorimetry. In: Schick, C., Mathot, V. (eds) Fast Scanning Calorimetry. Springer, Cham. https://doi.org/10.1007/978-3-319-31329-0_7

Download citation

Publish with us

Policies and ethics