Skip to main content
Log in

Mathematical Support for the CAD Technological Subsystem of a Glass-Melting Furnace

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

Abstract

The advisability of constructing a CAD system for glass-melting furnaces is demonstrated. The main principles of the mathematical support for the CAD technological subsystem are formulated. The principles of constructing a mathematical model of the thermal performance of a furnace are described. The main equations providing for a combined solution of the exterior and the interior problems of heat and mass exchange taking into account the specifics of the physiochemical aspects of the glass-melting process are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. Ya. Dzyuzer, “Contemporary trends in the development of glass container production,” Steklo Keram., No. 4, 3 - 8 (2004).

    Google Scholar 

  2. V. Ya. Dzyuzer and V. G. Lisienko, “Topical problems of thermal engineering in glass melting,” Steklo Keram., No. 6, 10 - 11 (1980).

    Google Scholar 

  3. V. S. Shvydkii, N. A. Spirin, M. G. Ladygichev, et al., Elements of the Theory of Systems and Numerical Methods of Modeling Heat and Mass Transfer Processes. A Manual[in Russian], Intermet Engineering, Moscow (1999).

    Google Scholar 

  4. V. A. Arutyunov, V. V. Bukhmirov, and S. A. Krupennikov, Mathematical Modeling of the Thermal Work of Glass-Melting Furnaces. A Manual[in Russian], Metallurgiya, Moscow (1990).

  5. Yu. A. Zhuravlev, “A numerical method for refined calculation of superradiation and dissipation in radiation heat exchange processes,” Inzh. Fiz. Zh., 37(4) (1979).

  6. V. G. Lisienko, Yu. A. Zhuravlev, and B. I. Kitaev, “A study of the radiation field in the working space of the flame furnace with luminous flame,” Izv. Vuzov, Ser. Chern. Met., No. 10, 137 - 141 (1970).

    Google Scholar 

  7. A. E. Klekl', “A mathematical model of exterior heat exchange in the working space of the flame furnace and some of its pro-perties,” in: Publ. of VNIPIchermetenergoochistka Institute, Issue 11/12[in Russian] (1968), pp. 293 - 299.

  8. S. D. Dreizin-Dubchenko and A. É. Klekl', “Determination of the radiation exchange coefficient by the statistical test method,” in: Publ. of VNIPIchermetenergoochistka Institute, Issue 11/12 [in Russian] (1968), pp. 285 - 293.

  9. A. S. Telegin, V. S. Shvydkii, and Yu. G. Yaroshenko, Heat and Mass Transfer. A Manual[in Russian], Akademkniga, Moscow (2002).

    Google Scholar 

  10. V. G. Lisienko, V. I. Lobanov, and B. I. Kitaev, Thermal Physics of Metallurgical Processes. A Manual[in Russian], Metallurgiya, Moscow (1982).

  11. S. Patankar, Numerical Methods for Solving Problems of Heat Exchange and Dynamics of Fluids[Russian translation], Énergoatomizdat, Moscow (1984).

    Google Scholar 

  12. R. Haase, Thermodynamik der irreversiblen Prozesse, Darmshtadt (1963).

  13. A. Gosman et al., Heat and Mass Transfer in Recirculating Flows, Springer, Heidelberg (1969).

    Google Scholar 

  14. D. Anderson, J. Tannehill, and R. Pletcher, Computational Fluid Mechanics and Heat Transfer, Hemisphere Publishing Corporation, New York (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzyuzer, V.Y., Shvydkii, V.S. & Kut'in, V.B. Mathematical Support for the CAD Technological Subsystem of a Glass-Melting Furnace. Glass and Ceramics 61, 211–216 (2004). https://doi.org/10.1023/B:GLAC.0000048348.97136.6c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GLAC.0000048348.97136.6c

Keywords

Navigation