Skip to main content
Log in

A mariner-like element with a 5' lesion in Drosophila simulans

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The unstable white-S2 (w S2) allele of the white gene occurred spontaneously in the S2 strain of Drosophila simulans. This mutation was caused by insertion of the submariner element, a mariner-like element with an abnormal tandem duplication of the 5' inverted terminal repeat (ITR). Although it has an incomplete ITR, submariner excises efficiently. The rate of somatic reversion, estimated by the number of eye-color mosaic flies, was 79.9%, and the reversion frequency in the germline was 0.6%. The change to the 5' ITR contributes to make this transposon precise excision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augé-Gouillou, C., H. Notareschi-Leroy, P. Abad, G. Periquet & Y. Bigot, 2000. Phylogenetic analysis of the functional domains of mariner-like element (MLE) transposases. Mol. Gen. Genet. 264: 506–513.

    PubMed  Google Scholar 

  • Augé-Gouillou, C., M.H. Hamelin, M.V. Demattei, M. Periquet & Y. Bigot, 2001. The wild-type conformation of the Mos-1 inverted terminal repeats is suboptimal for transposition in bacteria. Mol. Genet. Genomics 265: 51–57.

    PubMed  Google Scholar 

  • Bryan, G.J. & D.L. Hartl, 1988. Maternally inherited transposon excision in Drosophila simulans. Science 240: 215–217.

    PubMed  Google Scholar 

  • Bryan, G.J., D. Garza & D. Hartl, 1990. Insertion and excision of the transposable element mariner in Drosophila. Genetics 125: 103–114.

    PubMed  Google Scholar 

  • Capy, P., A. Koga, J.R. David & D.L. Hartl, 1992. Sequence analysis of active mariner elements in natural populations of Drosophila simulans. Genetics 130: 499–506.

    PubMed  Google Scholar 

  • Carr, B. & P. Anderson, 1994. Imprecise excision of the Caenorhabditis elegans transposon Tc1 creates functional 5′ splice sites. Mol. Cell. Biol. 14: 3426–3433.

    PubMed  Google Scholar 

  • Church, G.M. & W. Gilbert, 1984. Genomic sequencing. P. Natl. Acad. Sci. USA 81: 1991–1995.

    Google Scholar 

  • Doak, T.G., F.P. Doerder, C.L. Jahn & G. Herrick, 1994. A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common 'D35E' motif. P. Natl. Acad. Sci. USA 91: 942–946.

    Google Scholar 

  • Giraud, T. & P. Capy, 1996. Somatic activity of the mariner transposable element in natural populations of Drosophila simulans. P. Roy. Soc. Lond. B. Bio. 263: 1481–1486.

    Google Scholar 

  • Hartl, D.L., 1989. Transposable element mariner in Drosophila species, pp. 531–536 in Mobile DNA, edited by DE. Berg & M.M. Hower. American Society for Microbiology, Washington.

    Google Scholar 

  • Hartl, D.L., 2001. Discovery of the transposable element mariner. Genetics 157: 471–476.

    PubMed  Google Scholar 

  • Inoue, Y.H., T. Taira & M.-T. Yamamoto, 1988. Genetics of an unstable white mutant in Drosophila simulans: reversion, suppression and somatic instability. Genetics 119: 903–912.

    PubMed  Google Scholar 

  • Lampe, D.J., M.E. Churchill & H.M. Robertson, 1996. A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J. 15: 5470–5479.

    PubMed  Google Scholar 

  • Lohe, A.R. & D.L. Hartl, 2002. Efficient mobilization of mariner in vivo requires multiple internal sequences. Genetics 160: 519–526.

    PubMed  Google Scholar 

  • Lohe, A.R., C. Timmons, I. Beerman, E.R. Lozovskaya & D.L. Hartl, 2000. Self-inflicted wounds, template-directed gap repair and a recombination hotspot: effects of the mariner transposase. Genetics 154: 647–656.

    PubMed  Google Scholar 

  • Maruyama, K. & D.L. Hartl, 1991. Evolution of the transposable element mariner in Drosophila species. Genetics 128: 319–329.

    PubMed  Google Scholar 

  • O'Brochta, D.A., S.P. Gomez & A.M. Handler, 1991. P-element excision in Drosophila melanogaster and related Drosophilids. Mol. Gen. Genet. 225: 387–394.

    PubMed  Google Scholar 

  • O'Hare, K., C. Murphy, R. Levis & G.M. Rubin, 1984. DNA sequence of the white locus of Drosophila melanogaster. J. Molec. Biol. 180: 437–455.

    PubMed  Google Scholar 

  • Sambrook, J., E.F. Fritsch & T. Maniatis, 1989. Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2nd edn.

    Google Scholar 

  • Uenoyama, T. & Y. Inoue, 1995. Genetic studies on premating isolation in Drosophila simulans. Jpn. J. Genet. 70: 367–373.

    Google Scholar 

  • van Luenen, H.G., S.D. Colloms & R.H. Plasterk, 1994. The mechanism of transposition of Tc3 in C. elegans. Cell 79: 293–301.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masa-Toshi Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogura, K., Yamamoto, MT. A mariner-like element with a 5' lesion in Drosophila simulans . Genetica 119, 229–235 (2003). https://doi.org/10.1023/B:GENE.0000003602.98863.67

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GENE.0000003602.98863.67

Navigation