Skip to main content
Log in

Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Conditions affecting Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merr.], including seed vigor of explant source, selection system, and cocultivation conditions, were investigated. A negative correlation between seed sterilization duration and seed vigor, and a positive correlation between seed vigor and regenerability of explants were observed in the study, suggesting that use of high vigor seed and minimum seed sterilization duration can further improve transformation efficiency. Selection schemes using glufosinate or bialaphos as selective agents in vitro were assessed. Glufosinate selection enhanced soybean transformation as compared to bialaphos. The use of 6 mg L-1 glufosinate during shoot induction and shoot elongation stages yielded higher final transformation efficiency ranging from 2.0% to 6.3% while bialaphos at 4 to 6 mg L-1 gave 0% to 2.1% efficiency. Including cysteine and DTT during cocultivation increased the transformation efficiency from 0.2–0.9% to 0.6–2.9%. This treatment also improved T-DNA transfer as indicated by enhanced transient GUS expression. Shoot regeneration and Agrobacterium infection were attained in twelve soybean cultivars belonging to maturity groups I-VI. These cultivars maybe amenable to genetic transformation and may provide a valuable tool in soybean improvement programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, G., P.R. Evert, A. Mitra & S.B. Ha, 1988. Binary vectors. In: S.B. Gelvin & R.A. Schilperoort (Eds.), Plant Molecular Biology Manual A3, pp. 1–19. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Baker, C.M., N. Muñoz-Fernandez & C.D. Carter, 1999. Im-proved shoot development and rooting from mature cotyledons of sunflower. Plant Cell Tiss Org Cult 58: 39–49.

    Article  CAS  Google Scholar 

  • Carrington, J.C. & D.D. Freed, 1990. Cap-independent enhance-ment of translation by a plant potyvirus 5' nontranslated region. J Virol 64: 1590–1597.

    PubMed  CAS  Google Scholar 

  • Clemente, T., B.J. LaValle, A.R. Howe, D.C. Ward, R.J. Rozman, P.E. Hunte, D.L. Broyles, D.S. Kasten & M.A. Hinchee, 2000. Progeny analysis of glyphosate selected transgenic soybeans de-rived from Agrobacterium-mediated transformation. Crop Sci 40: 797–803.

    Article  CAS  Google Scholar 

  • De Cleene, M. & J. De Ley, 1976. The host range of crown gall. Bot Rev 42: 389–466.

    Google Scholar 

  • Delouche, J.C. & C.C. Baskin, 1973. Accelerated aging techniques for predicting the relative storability of seed lots. Seed Sci & Technol 1: 427–452.

    Google Scholar 

  • Dennehey, B.K., W.L. Peterson, C. Ford-Santino, M. Pajeau & C.L. Armstrong, 1994. Comparison of selective agents for use with the selectable marker gene bar in maize transformation. Plant Cell Tiss Org Cult 36: 1–7

    Article  CAS  Google Scholar 

  • Di, R., V. Purcell, G.B. Collins & S.A. Ghabrial, 1996. Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursor gene. Plant Cell Rep 15: 746–750.

    Article  CAS  Google Scholar 

  • Donaldson, P.A. & D.H. Simmonds, 2000. Susceptibility to Agrobacterium tumefaciens and cotyledonary node transforma-tion in short-season soybean. Plant Cell Rep 19: 478–484.

    Article  CAS  Google Scholar 

  • Droste, A., G. Pasquali & M.H. Bodanese-Zanettini, 2002. Trans-genic fertile plants of soybean [Glycine max (L). Merrill] ob-tained from bombarded embryogenic tissue. Euphytica 127: 367–376.

    Article  CAS  Google Scholar 

  • Enriquez-Obregon, G.A., D.L. Prieto-Samsonov, G.A. de la Riva, M. Perez, G. Selman-Housein & R.I. Vasquez-Padron, 1999. Agrobacterium-mediated Japonica rice transformation: a proced-ure assisted by antinecrotic treatment. Plant Cell Tiss Org Cult 59: 159–168.

    Article  CAS  Google Scholar 

  • Frame, B.R., H. Shou, R.K. Chikwamba, Z. Zhang, C. Xiang, T.M. Fonger, S.E.K. Pegg, B. Li, D.S. Nettleton, D. Pei & K. Wang, 2002. Agrobacterium tumefaciens-mediated transforma-tion of maize embryos using standard binary vector system. Plant Physiol 129: 13–22.

    Article  PubMed  CAS  Google Scholar 

  • Fukuoka, H., T. Ogawa, I. Mitsuhara, T. Iwai, K. Isuzigawa, Y. Nishizawa, Y. Gotoh, Y. Nishizawa, A. Tagiri & M. Ugaki, 2000. Agrobacterium-mediated transformation of monocot and dicot plants using the NCR promoter derived from soybean chlorotic mottle virus. Plant Cell Rep 19: 815–820.

    Article  CAS  Google Scholar 

  • Gamborg, O.L., R.A. Miller & K. Ojima, 1968. Nutrient require-ments of suspension cultures of soybean root cells. Exp Cell Res 50: 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz, P., Z. Svab & P. Maliga, 1994. The small ver-satile pZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25: 989–994.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, G. & M.S. Wright, 1999. Recent advances in the transform-ation of plants. Trends Plant Sci 4: 226–231.

    Article  PubMed  Google Scholar 

  • Hiei, Y., S. Ohta, T. Komari & T. Kumashiro, 1994. Efficient trans-formation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6: 271–282.

    Article  PubMed  CAS  Google Scholar 

  • Hood, E.E., G.L. Helmer, R.T. Fraley & M.D. Chilton, 1986. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168: 1291–1301.

    PubMed  CAS  Google Scholar 

  • Ishida, Y., H. Saito, S. Ohta, Y. Hiei, T. Komari & T. Kumashiro, 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14: 745–750.

    Article  PubMed  CAS  Google Scholar 

  • ISTA, 1999. International Rules for Seed Testing. Seed Sci Technol (Supplement) 27: 1–333.

    Google Scholar 

  • Jefferson, R.A., T.A. Kavanagh & M.W. Bevan, 1987. GUS fusion: β-glucoronidase as a selective and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907.

    PubMed  CAS  Google Scholar 

  • Komari, T. & T. Kubo, 1999. Methods of genetic transformation: Agrobacterium tumefaciens. In: I.K. Vasil (Ed.), Molecular Improvement of Cereal Crops, pp. 43–82. Kluwer Academic Publishers, Dordrecht/Boston.

    Google Scholar 

  • Liu, W., R.S. Torisky, K.P. McAllister, S. Avdiushko, D. Hildebrand & G.B. Collins, 1996. Somatic embryo cycling: evaluation of a novel transformation and assay system for seed-specific gene expression in soybean. Plant Cell Tiss Org Cult 47: 33–42.

    Article  CAS  Google Scholar 

  • Lowe, K., B. Bowen, G. Hoerster, M. Ross, D. Bond, D. Pierce & B. Gordon-Kamm, 1995. Germline transformation of maize follow-ing manipulation of chimeric shoot meristems. Bio/Technology 13: 677–682.

    Article  CAS  Google Scholar 

  • Lu, G., A. Hepburn & J. Widholm, 1994. A simple procedure for the expression of genes in transgenic soybean callus tissue. Plant Cell Rep 13: 632–636.

    Google Scholar 

  • Maruyama, E.K., A. Ishi, S. Migita & K. Migita, 1989. Screening of suitable sterilization of explants and proper media for tissue culture of eleven tree species of Peru-Amazon forest. J Agric Sci 33: 252–261.

    Google Scholar 

  • Mason, H.S., D. DeWald & J.E. Mullet, 1993. Identification of a methyl jasmonate-responsive domain in the soybean vspB promoter. Plant Cell 5: 241–251.

    Article  PubMed  CAS  Google Scholar 

  • Maughan, P.J., R. Phili, M.-J. Cho, J.M. Widholm & L.O. Vodkin, 1999. Biolistic transformation, expression, and inheritance of bovine β-casein in soybean (Glycine max). In Vitro Cell Dev Biol-Plant 35: 334–349.

    Google Scholar 

  • Meurer, C.A., R.D. Dinkins & G.B. Collins, 1998. Factors affecting soybean cotyledonary node transformation. Plant Cell Rep 18: 180–186.

    Article  CAS  Google Scholar 

  • Murashige, T. & F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–479.

    Article  CAS  Google Scholar 

  • Odell, J.T., F. Nagy & N.H. Chua, 1985. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 6: 810–812.

    Article  Google Scholar 

  • Olhoft, P.M., K. Lin, J. Galbraith, N.C. Nielsen & D.A. Somers, 2001. The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Rep 20: 731–737.

    Article  CAS  Google Scholar 

  • Olhoft, P.M. & D.A. Somers, 2001. L-cysteine increases Agrobacte-rium-mediated T-DNA delivery into soybean cotyledoanry-node cells. Plant Cell Rep 20: 706–711.

    Article  CAS  Google Scholar 

  • Olhoft, P.M., L.E. Flagel, C.M. Donovan & D.A. Somers, 2003. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216: 723–735.

    PubMed  CAS  Google Scholar 

  • Parrott, W.A., L.M. Hoffman, D.F. Hildebrand, E.G. Williams & G.B. Collins, 1989. Recovery of primary transformants of soybean. Plant Cell Rep 7: 615–617.

    CAS  Google Scholar 

  • Peach, C. & J. Velten, 1992. Application of the chloramphen-icol acetyltransferase (CAT) diffusion assay to transgenic plant tissues. BioTechniques 12: 181–186.

    PubMed  CAS  Google Scholar 

  • Perl, A., O. Lotan, M. Abu-Abied & D. Holland, 1996. Estab-lishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): The role of antioxidants during grape-Agrobacterium interactions. Nat Biotechnol 14: 624–628.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, M.S.S., R.D. Dinkins & G.B. Collins, 2003. Gene si-lencing in transgenic soybean plants transformed via particle bombardment. Plant Cell Rep 21: 676–683.

    PubMed  CAS  Google Scholar 

  • Sandhu, D., J.A. Champoux, S.N. Bondareva & K.S. Gill, 2001. Identification and physical localization of useful genes and mark-ers to a major gene-rich region on wheat group 1S chromosomes. Genetics 157: 1735–1747.

    PubMed  CAS  Google Scholar 

  • Santarem, E.R. & J.J. Finer, 1999. Transformation of soybean [Gly-cine max (L.) Merrill] using proliferative embryogenic tissue maintained on semi-solid medium. In Vitro Cell Dev Biol – Plant 35: 451–455.

    Google Scholar 

  • Santarem, E.R., H.N. Trick, J.S. Essig & J.J. Finer, 1998. Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expres-sion. Plant Cell Rep 17: 752–759.

    Article  CAS  Google Scholar 

  • Singh, R.J., T.M. Klein, C.J. Mauvais, S. Knowlton, T. Hymowitz & C.M. Kostow, 1998. Cytological characterization of transgenic soybean. Theor Appl Genet 96: 319–324

    Article  Google Scholar 

  • Shou, H., B. Frame, S. Whitham & K. Wang, 2004. Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breed, in press, http: //www.kluweronline.com/issn/1380-3743/contents

  • Somers, D.A., D.A. Samac & P.M. Olhoft, 2003. Recent advances in legume transformation. Plant Physiol 131: 892–899.

    Article  PubMed  CAS  Google Scholar 

  • Tachibana, K., T. Watanabe, Y. Sekizawa & T. Takematsu, 1986. Accumulation of ammonia in plants treated with bialaphos. J Pestic Sci 11: 33–37.

    CAS  Google Scholar 

  • Thompson, C.K., N.R. Movva, R. Tizard, R. Crameri, J.E. Davies, M. Lauwereys & J. Botterman, 1987. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6: 2519–2523.

    PubMed  CAS  Google Scholar 

  • Trick, H.N. & J.J. Finer, 1998. Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merril] embryogenic suspension culture tissue. Plant Cell Rep 17: 482–488.

    Article  CAS  Google Scholar 

  • Vancanneyt, G., R. Schmidt, A. O'Connor-Sanchez, L. Willmitzer & M. Rocha-Sosa, 1990. Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220: 245–250.

    Article  PubMed  CAS  Google Scholar 

  • Wang, K., B. Frame & L. Marcell, 2003. Genetic transformation of maize. In: P.K. Jaiwal & R.P. Singh (Eds.), Plant Engineer-ing Vol. 2, Improvement of Food Crops, pp. 175–217. Sci Tech Publishing LLC, USA.

    Google Scholar 

  • Wehrmann, A., A.V. Vliet, C. Opsomer, J. Botterman & A. Schulz, 1996. The similarities of bar and pat gene products make them equally applicable for plant engineers. Nat Biotechnol 14: 1274–1278.

    Article  PubMed  CAS  Google Scholar 

  • White, J., S.Y. Chang, M.J, Bibb & M.J. Bibb, 1990. A cassette containing the bar gene of S. hygroscopicus: a selectable marker for plant transformation. Nucl Acids Res 18: 1062.

    PubMed  CAS  Google Scholar 

  • Widholm, J.M., 1995. Leguminous plants. In: K. Wang, A. Herrera-Estrella & M. Van Montagu (Eds.), Transformation of Plants and Soil Microorganisms, pp. 101–124. Cambridge University Press, Cambridge.

    Google Scholar 

  • Zhang, Z., A. Xing, P. Staswick, T. Clemente, 1999. The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tiss Org Cult 56: 37–46.

    Article  CAS  Google Scholar 

  • Zhang, Z., Z. Guo, H. Shou, S.E. Pegg, T.E. Clemente, P.E. Staswick & K. Wang, 2000. Assessment of conditions affecting Agrobacterium-mediated soybean transformation and routine re-covery of transgenic soybean. In: A.D. Arencibia (Ed.), Plant Genetic Engineering: Towards the Third Millennium: Proceed-ings of the International Symposium on Plant Genetic Engineer-ing 6–10 December 1999, Havana, Cuba, pp. 88–94. Elsevier, Amsterdam / New York.

    Google Scholar 

  • Zhao, Z.Y., W. Gu, C. Tishu, L. Tagliani, D. Hondred, D. Bond, S. Schroeder, M. Rudert & D. Pierce, 2001. High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8: 323–333.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paz, M.M., Shou, H., Guo, Z. et al. Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136, 167–179 (2004). https://doi.org/10.1023/B:EUPH.0000030669.75809.dc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:EUPH.0000030669.75809.dc

Navigation