Skip to main content
Log in

Lattice mechanical properties of noble and transition metals

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

A model pseudopotential depending on an effective core radius but otherwise parameter free is used to study the interatomic interactions, phonon dispersion curves (inq and r-space analysis), phonon density of states, mode Grüneisen parameters, dynamical elastic constants (C 11,C 12 andC 44), bulk modulus (B), shear modulus (C′), deviation from Cauchy relation (C 12C 44), Poisson’s ratio (σ), Young’s modulus (Y), behavior of phonon frequencies in the elastic limit independent of the direction (Y 1), limiting value in the [110] direction (Y 2), degree of elastic anisotropy (A), maximum frequencyω max, mean frequency 〈ω〉, 〈ω 21/2=(〈ω〉/〈ω −1〉)1/2, fundamental frequency 〈ω 2〉, and propagation velocities of the elastic constants in Cu, Ag, Au, Ni, Pd, and Pt. The contribution of s-like electrons is calculated in the second-order perturbation theory for the model potential while that of d-like electrons is taken into account by introducing repulsive short-range Born-Mayer like term. Very recently proposed screening function due to Sarkar et al. has been used to obtain the screened form factor. The theoretical results are compared with experimental findings wherever possible. A good agreement between theoretical investigations and experimental findings has proved the ability of our model potential for predicting a large number of physical properties of transition metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.K. Baria: Czech. J. Phys.52 (2002) 969.

    Article  ADS  Google Scholar 

  2. C.V. Pandya, P.R. Vyas, T.C. Pandya, N. Rani, and V.B. Gohel: Physica B307 (2001) 138.

    Article  ADS  Google Scholar 

  3. V.N. Antonov, V.Yu. Milman, V.V. Nemoshkalenko, and A.V. Zhalko-Titavenko: Z. Phys. B - Condensed Matter79 (1990) 223; 233.

    Article  Google Scholar 

  4. V. Heine and D. Weair: Solid State Phys.24 (1970) P-418.

  5. A.R. Jani and H.K. Patel: Phys. Status Solidi B133 (1986) K21.

    Google Scholar 

  6. V.B. Gohel, C.K. Acharya, and A.R. Jani: Phys. Status Solidi B124 (1984) 137.

    Article  Google Scholar 

  7. A. Sarkar, D. Sen, S. Haldar, and D. Roy: Modern Phys. Lett.12 (1998) 639.

    Article  ADS  Google Scholar 

  8. J.M. Wills and W.A. Harrison: Phys. Rev. B28 (1983) 4363.

    Article  ADS  Google Scholar 

  9. D.C. Wallace:Thermodynamics of Crystal, Wiley, New York, 1972.

    Google Scholar 

  10. L.I. Yastrebov and A.A. Katsnelson:Foundation of one electron theory, Mir Publishers, Moscow, 1987 (in Russian).

    Google Scholar 

  11. N. Singh: Physica B269 (1999) 221.

    Article  ADS  Google Scholar 

  12. P.N. Gajjar, B.Y. Thakore, J.S. Luhar, and A.R. Jani: Physica B215 (1995) 293.

    Article  ADS  Google Scholar 

  13. P.N. Gajjar, B.Y. Thakore, H.K. Patel, and A.R. Jani: Acta Phys. Pol. A88 (1995) 489.

    Google Scholar 

  14. C.V. Pandya, P.R. Vyas, T.C. Pandya, and V.B. Gohel: Pramana J. Phys.56 (2001) 1.

    Google Scholar 

  15. O.P. Kulshrestha, H.C. Gupta, and J.C. Upadhyaya: Physica B84 (1976) 236.

    Article  Google Scholar 

  16. N. Singh, N.S. Banger, and S.P. Singh: Phys. Rev. B38 (1988) 7415.

    Article  ADS  Google Scholar 

  17. K. Mohammed, M.M. Shukla, F. Milstein, and J.L. Merz: Phys. Rev. B29 (1984) 3117.

    Article  ADS  Google Scholar 

  18. C.V. Pandya, P.R. Vyas, T.C. Pandya, N. Rani, and V.B. Gohel: Ind. J. Phys. A76 (2002) 147.

    Google Scholar 

  19. C.V. Pandya, P.R. Vyas, T.C. Pandya, N. Rani, and V.B. Gohel: J. Korean Phys. Soc.38 (2000).

  20. A.S. Ivanov, M.I. Katsnelson, A.G. Mikhin, Yu.N. Osetskii, A.Yu. Rumyantsev, A.V. Trefilov, Yu.F. Shamanavev, and L.I. Yakovenova: Philos. Mag. B69 (1994) 1183.

    Article  Google Scholar 

  21. N. Singh: Pramana J. Phys.52 (1999) 511.

    Google Scholar 

  22. R.M. Nicklow, G. Gilat, H.G. Smith, L.J. Raubenheimer, and M.K. Wilkinson: Phys. Rev.164 (1967) 922.

    Article  ADS  Google Scholar 

  23. W.A. Kamitakahara and B.N. Brockhouse: Phys. Lett. A29 (1969) 639.

    Article  ADS  Google Scholar 

  24. J.W. Lynn, H.G. Smith, and R.M. Nicklow: Phys. Rev. B8 (1973) 3493.

    Article  ADS  Google Scholar 

  25. A.P. Miller and B.N. Brockhouse: Can. J. Phys.49 (1971) 704.

    ADS  Google Scholar 

  26. D.H. Dutton and B.N. Brockhouse, and A.P. Miller: Can. J. Phys.50 (1972) 2916.

    ADS  Google Scholar 

  27. R.J. Birageneau, J. Cordes, G. Dolling, and A.B.D. Woods: Phys. Rev.136 (1964) 1359.

    Article  ADS  Google Scholar 

  28. F. Cleri and V. Rosato: Phys. Rev. B48 (1993) 22.

    Article  ADS  Google Scholar 

  29. D. Wolf, P.R. Okamoto, S. Yip, J.F. Lutsko, and M. Kluge: J. Mater. Res.5 (1990) 286.

    Article  ADS  Google Scholar 

  30. A.P. Sutton and J. Chen: Philos. Mag. Lett.61 (1990) 139.

    Article  Google Scholar 

  31. P. Soderlind, O. Eriksson, J.M. Wills, and A. M. Boring: Phys. Rev. B48 (1993) 5844.

    Article  ADS  Google Scholar 

  32. M. Doyama and Y. Kogure: Comput. Mater. Sci.14 (1999) 80.

    Article  Google Scholar 

  33. W.M. Hartmann and T.O. Milbrodt: Phys. Rev. B3 (1971) 4133.

    Article  ADS  Google Scholar 

  34. J.A. Moriarty: Phys. Rev. B45 (1992) 2002.

    Article  ADS  Google Scholar 

  35. P. Soderlind, R. Ahuja, O. Eriksson, J.M. Wills, and B. Jhonsson: Phys. Rev. B48 (1993) 5844.

    Article  ADS  Google Scholar 

  36. A.R. Jani and V.B. Gohel: Solid State Commun.41 (1982) 407.

    Article  Google Scholar 

  37. Luo Ningsheng, Xu Wenlan, and S.C. Shen: Solid State Commun.69 (1989) 155.

    Article  Google Scholar 

  38. K.K. Chopra and H.N. Laziz: Acta Phys. Hung.63 (1988) 291.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baria, J.K. Lattice mechanical properties of noble and transition metals. Czech J Phys 54, 469–485 (2004). https://doi.org/10.1023/B:CJOP.0000020585.40164.b8

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CJOP.0000020585.40164.b8

PACS

Key words

Navigation