Skip to main content
Log in

Various organizations of the complex repeats in vole sex chromosome heterochromatin

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Different patterns of the DNA sequences organization were revealed in the vole (Rodentia) sex chromosome heterochromatin using dual-label fluorescence in-situ hybridization on extended DNA fibers with different repetitive DNA sequences as probes. In Microtus rossiaemeridionalis, the basic type represents the homogeneous relatively short tracks consisting of tandemly reiterated monomers of the MS3 family alternating with similar tracks of MS4 monomers and with non-fluorescent spacers. These tracks varied in the length of both repeats, with an average size of 12–22 kb or 3–5 copies. Apart from this, some continuous tracks of both families spanning 100–200 kb were interrupted by short spacers or single signals from the sequences with homology to LINEs. These results, together with that obtained by the analysis of phage clones of the genomic library, unequivocally demonstrate a variable large-scale DNA structural organization in heterochromatin of the M. rossiaemeridionalis sex chromosome. The dominant type of large-scale DNA organization in M. transcaspicus heterochromatin represents the unicolor relatively long tracks consisting of monotonous but not alternating monomers of MS3 or MS4 with sizes ranging from 15 to 40 kb and separated by extended spacers with an average length of 20 kb. Thus, the formation of the vole sex chromosome heterochromatic regions occurred relatively recently during speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ananiev EV, Phillips RL, Rines HW (1998) Complex structure of knob DNA on maize chromosome 9. Retrotransposon invasion into heterochromatin. Genetics 149: 2025–2037.

    PubMed  CAS  Google Scholar 

  • Avramova ZV (2002) Heterochromatin in animals and plants. Similarities and differences. Plant Physiol 129: 40–49.

    Article  PubMed  CAS  Google Scholar 

  • Celniker SE, Wheeler DA, Kronmiller B et al. (2002) Finishing a whole-genome shotgun: Release 3 of the Drosophila melanogaster euchromatic genome sequence. Genome Biol 3(12): RESEARCH0079.

    Google Scholar 

  • Charlesworth B (1991) The evolution of sex chromosomes. Science 251: 1030–1033.

    PubMed  CAS  Google Scholar 

  • Charlesworth B, Jarne P, Assimacopoulos S (1994a) The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. III. Element abundances in heterochromatin. Genet Res 64: 183–197.

    PubMed  CAS  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994b) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Csink AK, Henikoff S (1998) Something from nothing: the evolution and utility of satellite repeats. Trends Genet 14: 200–204.

    Article  PubMed  CAS  Google Scholar 

  • Dimitri P, Junakovich N (1999) Revising the selfish DNA hypothesis: New evidence on accumulation of transposable elements in heterochromatin. Trends Genet 15: 123–124.

    Article  PubMed  CAS  Google Scholar 

  • Dorer DR, Henikoff S (1994) Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77: 993–1002.

    Article  PubMed  CAS  Google Scholar 

  • Elisaphenko EA, Nesterova TB, Duthie SM, Ruldugina OV, Zakian SM, Brockdorff N (1998) Repetitive DNA sequences in the common vole: cloning, characterization and chromosome localization of two novel complex repeats MS3 and MS4 from the genome of the East European vole Microtus rossiaemeridionalis. Chromosome Res 6: 351–360.

    Article  PubMed  CAS  Google Scholar 

  • Ermolaeva SV, Elisaphenko EA, Zakian SM (2001) Organization of extended repeats in heterochromatin in sex chromosomes in the common vole species Microtus group ‘arvalis’. Mol Biol (Mosk) 35: 28–33.

    Article  CAS  Google Scholar 

  • Fennelly J, Harper K, Laval S, Wright E, Plumb M (1996) Co-amplification of tail to tail copies of MuRVY and IAPY retroviral genomes on the Mus musculus Y chromosome. Mamm Genome 7: 31–36.

    Article  PubMed  CAS  Google Scholar 

  • Fidlerova H, Senger G, Kost M, Sanseau P, Sheer D (1994) Two simple procedures for releasing chromatin from routinely fixed cells for fluorescence in situ hybridization. Cytogenet Cell Genet 65(3): 203–205.

    PubMed  CAS  Google Scholar 

  • Graves JAM (1995) The origin and function of the mammalian Y chromosome and Y-borne genes — an evolving understanding. Bioessays 17: 311–321.

    Article  PubMed  CAS  Google Scholar 

  • Graves JAM, Watson JM (1991) Mammalian sex chromosomes: evolution of organization and function. Chromosoma 101: 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Ivanov SV, Modi WS (1996) Molecular characterization of the complex sex-chromosome heterochromatin in the rodent Microtus chrotorrhinus. Cytogenet Cell Genet 75: 49–56.

    PubMed  CAS  Google Scholar 

  • John B (1988) The biology of heterochromatin. In: Verma RS, ed. Heterochromatin: Molecular and Structural Aspects. Cambridge: Cambridge University Press, pp 1–147.

    Google Scholar 

  • Kalscheuer V, Singh AP, Nanda I, Sperling K, Neitzel H (1996) Evolution of the gonosomal heterochromatin of Microtus agrestis: rapid amplification of a large, multimeric, repeat unit containing a 3.0-kb (GATA)11-positive, middle repetitive element. Cytogenet Cell Genet 73: 171–178.

    Article  PubMed  CAS  Google Scholar 

  • Kholodilov NG, Mayorov VI, Mullokandov MR et al. (1993) LINE-1 element in the vole Microtus subarvalis. Mamm Genome 4: 624–626.

    Article  PubMed  CAS  Google Scholar 

  • Kozlova SV, Elisaphenko EA, Mazurok NA, Zakian SM (2001) Genomic organization and chromosomal localization of a new repeat MS7, specific for heterochromatin of sex chromosomes in Microtus species voles of the arvalis group. Mol Biol (Mosk) 35(5): 792–797.

    Article  CAS  Google Scholar 

  • Le M-H, Duricka D, Karpen GH (1995) Islands of complex DNA are widespread in Drosophila centric heterochromatin. Genetics 141: 283–303.

    PubMed  CAS  Google Scholar 

  • Lim JK, Simmons MJ (1994) Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster. BioEssays 16: 269–275.

    Article  PubMed  CAS  Google Scholar 

  • Loeb DD, Padgett RW, Hardies SC et al. (1986) The sequence of a large L1Md element reveals a tandemly repeated 5′ end and several features found in retrotransposons. Mol Cell Biol 6(1): 168–182.

    PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch P, Sambrook J (1992) Molecular Cloning, Laboratory Manual. Cold Spring Harbour: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Mazurok NA, Rubtsova NV, Isaenko AA et al. (2001) Comparative chromosome and mitochondrial DNA analyses and phylogenetic relationships within common voles (Microtus, Arvicolidae). Chromosome Res 9: 107–120.

    Article  PubMed  CAS  Google Scholar 

  • Mayorov VI, Rogozin IB, Adkison LR (1999) Characterization of several LINE-1 elements in Microtus kirgisorum. Mamm Genome 10: 724–729.

    Article  PubMed  CAS  Google Scholar 

  • McCombie WR, de la Bastide M, Habermann K et al. (2000) The Cold Spring Harbor Laboratory, Washington University Genome Sequencing Center, and PE Biosystems Arabidopsis Sequencing Consortium. The complete sequence of a heterochromatic island from a higher eukaryote. Cell 100: 377–386.

    Article  CAS  Google Scholar 

  • Nesterova TB, Slobodyanyuk SYA, Elisaphenko EA et al. (2001) Characterization of the genomic Xist locus in Rodents reveals conservation of overall gene structure and tandem repeats but rapid evolution of unique sequence. Genome Res 11: 833–849.

    Article  PubMed  CAS  Google Scholar 

  • O'Hare K, Chadwick BP, Constantinou A, Davis AJ, Mitchelson A, Tudor M (2002) A 5.9-kb tandem repeat at the euchromatin-heterochromatin boundary of the X chromosome of Drosophila melanogaster. Mol Genet Genomics 267: 647–655.

    Article  PubMed  CAS  Google Scholar 

  • Redi CA, Garagna S, Zacharias H, Zuccotti M, Capanna E (2001) The other chromatin. Chromosoma 110: 136–147.

    PubMed  CAS  Google Scholar 

  • Singh A, Henschel S, Sperling K, Kalscheuer V, Neitzel H (2000) Differences in the meiotic pairing behavior of gonosomal heterochromatin between female and male Microtus agrestis: implications for the mechanism of heterochromatin amplification on the X and Y. Cytogenet Cell Genet 91: 253–260.

    Article  PubMed  CAS  Google Scholar 

  • Sjoberg A, Peelman LJ, Chowdhary BP (1997) Application of three different methods to analyse fibre-FISH results obtained using four lambda clones from the porcine MHC III region. Chromosome Res 5(4): 247–253.

    Article  PubMed  CAS  Google Scholar 

  • Skatelsky H, Kuroda-Kawaguchi T, Minx PJ et al. (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423: 825–837.

    Article  CAS  Google Scholar 

  • Smith GP (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191: 528–535.

    PubMed  CAS  Google Scholar 

  • Stephan W, Cho S (1994) Possible role of natural selection in the formation of tandem-repetitive noncoding DNA. Genetics 136: 333–341.

    PubMed  CAS  Google Scholar 

  • Venter JC, Adams MD, Myers EW et al. (2001) The sequence of the human genome. Science 291(5507): 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  • Wevrick R, Willard VP, Willard HF (1992) Structure of DNA near long tandem arrays of alpha satellite DNA at the centromere of human chromosome 7. Genomics 14: 912–923.

    Article  PubMed  CAS  Google Scholar 

  • Willard HF, Waye JS (1987) Hierarchical order in chro-mosome-specific human alpha satellite DNA. Trends Genet 3: 192–198.

    Article  CAS  Google Scholar 

  • Zakian SM, Nesterova TB, Cheryaukene OV, Bochkarev MN (1991) Heterochromatin as a factor affecting the inactivation of X-chromosome in interspecies hybrid voles (Microtidae, Rodentia). Genet Res 58: 105–110.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suren M. Zakian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlova, S.V., Mazurok, N.A., Vershinin, A.V. et al. Various organizations of the complex repeats in vole sex chromosome heterochromatin. Chromosome Res 11, 759–769 (2003). https://doi.org/10.1023/B:CHRO.0000005779.10547.06

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CHRO.0000005779.10547.06

Navigation