Skip to main content
Log in

Y-Faujasite Encapsulated Co Clusters: Synthesis, Characterization and Theoretical Model as Probe of the Methane Homologation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The adsorption of Co2(CO)8 onto the dehydrated Y-faujasite powder under an N2 atmosphere and onto the tetrahydrofuran slurry of Y-faujasite under a mixed CO and H2 atmosphere predominately yielded supported Co4(CO)12 and supported Co6(CO)16, respectively. The molecular cobalt-carbonyl clusters and their decarbonylated products have been structurally characterized by extended X-ray absorption fine structure (EXAFS). The decarbonylated sample a possesses a cluster of two Co atoms and the decarbonylated sample b has a cluster phase of three Co atoms. The decarbonylated sample a exhibited higher CH4 conversion and C2+ selectivity (C2+ selectivity = ∑nC n(n = 2–5)/∑nC n (n = 1–5) * 100%) in comparison with the decarbonylated sample b in methane homologation. A density functional theory (DFT) model was employed to calculate Co clusters adsorbed on a silica substrate which simulates Y-faujasite encapsulated Co clusters. The structural geometries, net spin electronic charge densities, energies of the metal–silica and metal–metal interactions in stable geometries are discussed and used to interpret the cluster size dependence of the catalytic activity and selectivity to C 2+ hydrocarbons in the methane homologation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Sinfelt, Bimetallic Catalysts, Discoveries, Concepts, and Application; Exxon Monograph (Wiley, New York, 1983).

    Google Scholar 

  2. B.C. Gates, L. Guczi and H. Knözinger (eds.) Metal Clusters in Catalysis (Elsevier, Amsterdam, 1986).

    Google Scholar 

  3. J.G.C. Shen, A.M. Liu, T. Tanaka and M. Ichikawa, J. Phys. Chem. B 102 (1998) 7782.

    Google Scholar 

  4. G.C. Shen, A.M. Liu, T. Shido and M. Ichikawa, Top. Catal. 2 (1995)141.

    Google Scholar 

  5. M. Ichikawa, Adv. Catal. 38 (1992) 283.

    Google Scholar 

  6. G.S. Swell, C.T. O'Connor and E. van Stern, Appl. Catal. A 125 (1995) 99.

    Google Scholar 

  7. G.A. Ozin and C. Gil, Chem. Rev. 89 (1989) 1749.

    Google Scholar 

  8. J.G.C. Shen, A.M. Liu, M. Ichikawa, Inorg. Chem. 37 (1998) 5497.

    Google Scholar 

  9. J.G.C. Shen, J. Phys. Chem. B 104 (2000) 423.G.C. Shen, T. Shido and M. Ichikawa, J. Phys. Chem. 100 (1996) 14265.

    Google Scholar 

  10. J.G.C. Shen, A.M. Liu and M. Ichikawa, J. Chem. Soc., Faraday Trans. 94 (1998) 1353.

    Google Scholar 

  11. L.L. Sheu, H.K. Knözinger and W.M.H. Sachtler, J. Am. Chem. Soc. 111 (1989) 8125.

    Google Scholar 

  12. S. Kawi, J.R. Chang and B.C. Gates, J. Am. Chem. Soc. 115 (1993) 4830.

    Google Scholar 

  13. S. Kawi, J.R. Chang and B.C. Gates, J. Phys. Chem. 97 (1993) 5375.

    Google Scholar 

  14. T. Beutel, S. Kawi, S.K. Purnell, H.K. Knözinger and B.C. Gates, J. Phys. Chem. 97 (1993) 7284.

    Google Scholar 

  15. G.A. Ozin and S. özkar, J. Phys. Chem. 94 (1990) 7556.

    Google Scholar 

  16. J.G.C. Shen, J. Phys. Chem. B. 105 (2001) 2336.

    Google Scholar 

  17. T.F. DegnanJr, K.M. Keville, M.E. Landis, D.O. Marler and D.N. Mazzone, US Patent 5 (1994) 557assigned to Mobil Corp. C.D. Chang, S. Han, D.J. Martenak, J.G. Santiesteban and D.E. Walsh, US Patent 6 (2001) 747, assigned to Mobil Corp.

    Google Scholar 

  18. N. Kosugi and H. Kuroda, Program EXAFS 2 (Research Center for Spectrochemistry, University of Tokyo, 1988).

  19. J.B.A.D. van Zon, D.C. Koningsberger, H.F.J. van't Blik and D.E. Sayers, J. Chem. Phys. 12 (1995) 5742.

    Google Scholar 

  20. P. Blaha, K. Schwarz and J. Luitz, WIEN 97, A Full Potential Linearized Augmented Plane Wave Package for Calculating Crystal Properties (Technische Universität: Wien, Austria, (1999).

    Google Scholar 

  21. Q. Ma, K. Klier, H. Cheng, J. Mitchell and K. Hayes, J. Phys. Chem. B 104 (2000) 10618.

    Google Scholar 

  22. V. Musolino, A. Selloni and R. Car, Surf. Sci. 413 (1998) 402.

    Google Scholar 

  23. Y. Iwasawa, M. Yamada; Y. Sato and H. Kuroda, J. Mol. Catal. 23 (1984) 95.

    Google Scholar 

  24. P. Chini, J. Chem. Soc., Chem. Commun. (1967) 440.

  25. H. Yang and J.L. Whitten, Surf. Sci. 255 (1991) 193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G.C. Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, J.G., Ma, Q. Y-Faujasite Encapsulated Co Clusters: Synthesis, Characterization and Theoretical Model as Probe of the Methane Homologation. Catalysis Letters 93, 19–27 (2004). https://doi.org/10.1023/B:CATL.0000016941.86599.08

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATL.0000016941.86599.08

Navigation