Skip to main content
Log in

Divanadium substituted keggin [PV2W10O40] on non-reducible supports-Al2O3 and SiO2: synthesis, characterization, and catalytic properties for oxidative dehydrogenation of propane

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Molecular metal oxide cluster, K5[α-1,2-PV2W10O40] (PV2W10), was found to have intrinsic catalytic activity for the oxidative dehydrogenation of propane with high selectivity (> 80%) to propylene at low propane conversion (0.3%). Synthesis of dispersed PV2W10 in non-reducible supports, γ-Al2O3 and SiO2, was done by incipient wetness impregnation. The supported catalysts were characterized by IR, Raman spectroscopy, nitrogen adsorption, x-ray powder diffraction (PXRD), elemental analysis, hydrogen temperature-programmed reduction (H2–TPR), and ammonia temperature-programmed desorption (NH3–TPD). Catalytic testing of the supported PV2W10 at equimolar cluster concentration revealed that when supported in γ-Al2O3 it is more active (sevenfold increase in propane conversion) but in SiO2 it is more selective to propylene (94%). The observed performance was due to both an increase in reducibility and higher concentration of strong acid sites for PV2W10 supported in γ-Al2O3 versus SiO2. Lastly, PV2W10 was shown to remain intact under reaction conditions indicating its thermal and oxidative stability.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. The Essential Chemical Industry-online (2017) Basic chemicals: Propene (Propylene) https://www.essentialchemicalindustry.org/chemicals/propene.html Accessed Oct 2020.

  2. Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Chem Rev 114:10613

    Article  CAS  Google Scholar 

  3. Vora BV (2012) Top Catal 55:1297

    Article  CAS  Google Scholar 

  4. Cavani F, Ballarini N, Cericola A (2007) Catal Today 127:113

    Article  CAS  Google Scholar 

  5. Grant JT, Carrero CA, Goeltl F, Venegas J, Mueller P, Burt SP, Specht SE, Mcdermott WP, Chieregato A, Hermans I (2016) Science 354:1570

    Article  CAS  Google Scholar 

  6. Carrero CA, Schloegl R, Wachs IE, Schomaecker R (2014) ACS Catal 4:3357

    Article  CAS  Google Scholar 

  7. Grant JT, Venegas JM, McDermott WP, Hermans I (2018) Chem Rev 118:2769

    Article  CAS  Google Scholar 

  8. Rossetti I, Mancini GF, Ghigna P, Scavini M, Piumetti M, Bonelli B, Cavani F, Comite A (2012) J Phys Chem C 116:22386

    Article  CAS  Google Scholar 

  9. López X, Carbó JJ, Bo C, Poblet JM (2012) Chem Soc Rev 41:7537

    Article  Google Scholar 

  10. Mizuno N, Misono M (1998) Chem Rev 98:199

    Article  CAS  Google Scholar 

  11. Khan MI, Deb S, Marshall CL (2009) Catal Lett 128:256

    Article  Google Scholar 

  12. Khan MI, Deb S, Aydemir K, Alwarthan AA, Chattopadhyay S, Miller JT, Marshall CL (2010) Catal Lett 135:282

    Article  CAS  Google Scholar 

  13. Khan MI, Aydemir K, Siddiqui MRH, Alwarthan AA, Marshall CL (2011) Catal Lett 141:538

    Article  CAS  Google Scholar 

  14. Hill CL (1998) Special thematic issue:polyoxometalates. Chem Rev 98:1

    Article  CAS  Google Scholar 

  15. Cronin L, Müller A (2012) Special thematic issue: polyoxometalate cluster science. Chem Soc Rev 41:7333

    Article  CAS  Google Scholar 

  16. Long D-L, Cronin L (2012) Special thematic issue: polyoxometalates. Dalt Trans 41:9815

    Article  CAS  Google Scholar 

  17. Sadakane M, Steckhan E (1998) Chem Rev 98:219

    Article  CAS  Google Scholar 

  18. Haber J, Matachowski L, Mucha D, Stoch J, Sarv P (2005) Inorg Chem 44:6695

    Article  CAS  Google Scholar 

  19. Kozhevnikov IV (1998) Chem Rev 98:171

    Article  CAS  Google Scholar 

  20. Varga M, Török B, Molnár Á (1998) J Therm Anal 53:207

    Article  CAS  Google Scholar 

  21. Sun M, Zhang J, Putaj P, Caps V, Lefebvre F, Pelletier J, Basset J-M (2014) Chem Rev 114:981

    Article  CAS  Google Scholar 

  22. Wang SS, Yang GY (2015) Chem Rev 115:4893

    Article  CAS  Google Scholar 

  23. Domaille PJ (1990). In: Ginsburg AP (ed) Inorganic syntheses, 27th edn. Wiley, New York

    Google Scholar 

  24. Domaille PJ (1984) J Am Chem Soc 106:7677

    Article  CAS  Google Scholar 

  25. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309

    Article  CAS  Google Scholar 

  26. Nomiya K, Yanagibayashi H, Nozaki C, Kondoh K, Hiramatsu E, Shimizu Y (1996) J Mol Catal A Chem 114:181

    Article  CAS  Google Scholar 

  27. Nomiya K, Nemoto Y, Hasegawa T, Matsuoka S (2000) J Mol Catal A Chem 152:55

    Article  CAS  Google Scholar 

  28. Nakagawa Y, Kamata K, Kotani M, Yamaguchi K, Mizuno N (2005) Angew Chem Int Ed Engl 44:5136

    Article  CAS  Google Scholar 

  29. Mizuno N, Kamata K (2011) Coord Chem Rev 255:2358

    Article  CAS  Google Scholar 

  30. Ivanchikova ID, Maksimchuk NV, Maksimovskaya RI, Maksimov GM, Kholdeeva OA (2014) ACS Catal 4:2706

    Article  CAS  Google Scholar 

  31. Kamata K, Yonehara K, Nakagawa Y, Uehara K, Mizuno N (2010) Nat Chem 2:478

    Article  CAS  Google Scholar 

  32. Huang W, Todaro L, Yap GPA, Beer R, Francesconi LC, Polenova T (2004) J Am Chem Soc 126:11564

    Article  CAS  Google Scholar 

  33. Watras MJ, Teplyakov AV (2005) J Phys Chem B 109:8928

    Article  CAS  Google Scholar 

  34. Rao KM, Gobetto R, Iannibello A, Zecchina A (1989) J Catal 119:512

    Article  CAS  Google Scholar 

  35. Pizzio LR, Cáceres CV, Blanco MN (1998) Appl Catal A Gen 167:283

    Article  CAS  Google Scholar 

  36. Saniger JM (1995) Mater Lett 22:109

    Article  CAS  Google Scholar 

  37. Wachs IE, Roberts CA (2010) Chem Soc Rev 39:5002

    Article  CAS  Google Scholar 

  38. Bajuk-Bogdanović D, Popa A, Uskoković-Marković S, Holclajtner-Antunović I (2017) Vib Spectrosc 92:151

    Article  Google Scholar 

  39. Nakka L, Molinari JE, Wachs IE (2009) J Am Chem Soc 131:15544

    Article  CAS  Google Scholar 

  40. Martra G, Arena F, Coluccia S, Frusteri F, Parmaliana A (2000) Catal Today 63:197

    Article  CAS  Google Scholar 

  41. Arena F, Di Chio R, Trunfio G (2015) Appl Catal A Gen 503:227

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ishaque Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 3393 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orozco, J.C., Shuaib, D.T., Marshall, C.L. et al. Divanadium substituted keggin [PV2W10O40] on non-reducible supports-Al2O3 and SiO2: synthesis, characterization, and catalytic properties for oxidative dehydrogenation of propane. Reac Kinet Mech Cat 131, 753–768 (2020). https://doi.org/10.1007/s11144-020-01893-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01893-7

Keywords

Navigation