Skip to main content

Advertisement

Log in

Methane activation on nickel oxide clusters with a concerted mechanism: a density functional theory study of the effect of silica support

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The support effect is an important issue in heterogeneous catalysis. A systematic density functional theory (DFT) study was performed to investigate the support effect of a silica model on the initial step of methane activation on NixOx (x =2,3) clusters with a concerted mechanism. Four reactions were examined by exploring their potential energy surfaces (PES): CH4 reacting with unsupported Ni2O2, with silica-supported Ni2O2, with unsupported Ni3O3, and with silica-supported Ni3O3. For each reaction, PES with different spin states were explored. For CH4 activation taking place via a concerted mechanism, the reaction barriers in terms of free energy and reaction free energy increased with the involvement of the model silica support. Only one PES made a major contribution to the overall reaction rate of all four reactions examined. No spin transition process was required for the reactions to undergo their most-favorable pathway from their starting reactants. These results provide a deeper insight into the support effect on C–H bond activation of small alkanes in general, and of methane in particular, on supported transition metal catalysts.

Different reaction behaviors of CH4 on nickel oxide clusters at the absence and presence of silica support

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. \( \frac{k_{\mathrm{supported}}}{k_{\mathrm{unsupported}}}= \exp \left(\frac{G_{\mathrm{unsupported}}-{G}_{\mathrm{supported}}}{\mathrm{RT}}\right) \), where R = 8.314 J mol−1 K−1 and T = 873.15 K. For Reactions A and B, G unsupported − G supported = 12.7 kcal mol−1 (see Figs. 2, 3). For Reactions C and D, G unsupported − G supported = 7.1 kcal mol−1 (see Figs. 4, 5).

References

  1. Weaver JF, Hakanoglu C, Antony A, Asthagiri A (2014) Alkane activation on crystalline metal oxide surfaces. Chem Soc Rev 43:7536–7547. doi:10.1039/c3cs60420a

    Article  CAS  Google Scholar 

  2. Grabowski R (2006) Kinetics of oxidative dehydrogenation of C2–C3 alkanes on oxide catalysts. Catal Rev Sci Eng 48:199–268. doi:10.1080/01614940600631413

    Article  CAS  Google Scholar 

  3. Gallei EF, Hesse M, Schwab E (2008) Development of industrial catalysts. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (Eds) Handbook of heterogeneous catalysis, Wiley VCH, 2nd edn, pp 57–66

  4. Crabtree RH (1995) Aspects of methane chemistry. Chem Rev 95:987–1007. doi:10.1021/cr00036a005

    Article  CAS  Google Scholar 

  5. Xu JH, Huang YQ, Yang XF, He L, Zhou HR, Lin QQ et al (2014) Enhancement of acetylene hydrogenation activity over Ni-Zn bimetallic catalyst by doping with Au. J Nanosci Nanotechnol 14:6894–6899. doi:10.1166/jnn.2014.8955

    Article  CAS  Google Scholar 

  6. Vahid S, Mirzael AA (2014) An investigation of the kinetics and mechanism of Fischer-Tropsch synthesis on Fe-Co-Ni supported catalyst. J Ind Eng Chem 20: 2166–2173 10.1016/j.jiec.2013.09.047 10.1016/j.jiec.2013.09.047#doilink

  7. Serna P, Gates BC (2014) Molecular metal catalysts on supports: organometallic chemistry meets surface science. Acc Chem Res 47:2612–2620. doi:10.1021/ar500170k

    Article  CAS  Google Scholar 

  8. Sun X, Geng C, Huo R, Ryde U, Bu Y, Li J (2014) Large equatorial ligand effects on C − H bond activation by nonheme iron (IV) -oxo complexes. J Phys Chem B 118:1493–1500. doi:10.1021/jp410727r

    Article  CAS  Google Scholar 

  9. Nakamura E, Yoshikai N, Yamanaka M (2002) Mechanism of C–H bond activation/C–C bond formation reaction between diazo compound and alkane catalyzed by dirhodium tetracarboxylate. J Am Chem Soc 124:7181–7291. doi:10.1021/ja017823o

    Article  CAS  Google Scholar 

  10. Zhang X, Song X, Sun Z, Li P, Yu J (2013) Density functional theory study on the mechanism of calcium sulfate reductive decomposition by methane. Fuel 110:204–211. doi:10.1016/j.fuel.2012.09.086

    Article  Google Scholar 

  11. Liu H, Wang B, Fan M, Henson N, Zhang Y, Francis Towler B et al (2013) Study on carbon deposition associated with catalytic CH4 reforming by using density functional theory. Fuel 110:712–718. doi:10.1016/j.fuel.2013.06.022

    Article  Google Scholar 

  12. Kozuch S, Shaik S (2011) How to conceptualize catalytic cycles? The energetic span model. Acc Chem Res 44:101–110. doi:10.1021/ar1000956

    Article  CAS  Google Scholar 

  13. Sun XY, Li B, Metiu H (2013) Ethane activation by Nb-doped NiO. J Phys Chem C 117:23597–23608. doi:10.1021/jp402980d

    Article  CAS  Google Scholar 

  14. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. doi:10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  15. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  16. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5653. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  17. Pidko EA, Hensen EJM, van Santen RA (2007) Dehydrogenation of light alkanes over isolated gallyl ions in Ga/ZSM-5 zeolites. J Phys Chem C 111:13068–13075. doi:10.1021/jp072110z

    Article  CAS  Google Scholar 

  18. Cheng MJ, Chenoweth K, Oxgaard J, Van Duin A, Goddard WA III (2007) Single-site vanadyl activation, functionalization, and reoxidation reaction mechanism for propane oxidative dehydrogenation on the cubic V4O10 cluster. J Phys Chem C 111:5115–5127. doi:10.1021/jp0663917

    Article  CAS  Google Scholar 

  19. Mitin AV, Baker J, Pulay PJ (2003) An improved 6-31G* basis set for first-row transition metals. Chem Phys 118:7775–7782. doi:10.1063/1.1563619

    CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2010) Gaussian 09, revision B.01. Gaussian, Inc, Wallingford

    Google Scholar 

  21. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161. doi:10.1063/1.456010

    Article  CAS  Google Scholar 

  22. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154–104. doi:10.1063/1.3382344

    Article  Google Scholar 

  23. Lin X, Poeppelmeier KR, Weitz E (2010) Oxidative dehydrogenation of ethane with oxygen catalyzed by K–Y zeolite supported first-row transition metals. Appl Catal A Gen 381:114–120. doi:10.1016/j.apcata.2010.03.049

    Article  CAS  Google Scholar 

  24. Lin X, Hoel CA, Sachtler WMH, Poeppelmeier KR, Weitz E (2009) Oxidative dehydrogenation (ODH) of ethane with O2 as oxidant on selected transition metal-loaded zeolites. J Catal 265:54–62. doi:10.1016/j.jcat.2009.04.007

    Article  CAS  Google Scholar 

  25. Allouti F, Manceron L, Alikhani ME (2006) The Ni2O2 reaction: the IR spectrum and structure of Ni2O2 a combined IR matrix isolation and theoretical study. Phys Chem Chem Phys 8:3715–25. doi:10.1039/b606248b

    Article  CAS  Google Scholar 

  26. Allouti F, Manceron L, Alikhani ME (2009) On the performance of the hybrid TPSS meta-GGA functional to study the singlet open-shell structures: a combined theoretical and experimental investigations of the Ni2O2 molecule. J Mol Struct THEOCHEM 903:4–10. doi:10.1016/j.theochem.2009.01.018

    Article  CAS  Google Scholar 

  27. Iwaszuk A, Nolan M, Jin Q, Fujishima M, Tada H (2013) Origin of the visible-light response of nickel (II) oxide cluster surface modified titanium(IV) dioxide. J Phys Chem C 117:2709–2718. doi:10.1021/jp306793r

    Article  CAS  Google Scholar 

  28. Jin W, Li C, Lefkidis G, Huebner W (2014) Laser control of ultrafast spin dynamics on homodinuclear iron- and nickel-oxide clusters. Phys Rev B 89:024419. doi:10.1103/PhysRevB.89.024419

    Article  Google Scholar 

  29. Hübner O, Himmel HJ (2013) Isomers and electronic states of Ni2O2H2 and evaluation of the effect of charge on the electronic properties and reactivity of Ni2O2. J Phys Chem A 117:12635–12641. doi:10.1021/jp409138a

    Article  Google Scholar 

  30. Kreevoy MM, Truhlar DG (1986) In: Bernasconi CF (ed) Investigation of rates and mechanisms of reaction. Techniques of chemistry, 4th edn, vol 6. Wiley, New York, p 13

    Google Scholar 

  31. Lin X, Xi Y, Sun J (2012) Unraveling the reaction mechanism for nickel-catalyzed oxidative dehydrogenation of ethane by DFT: the C − H bond activation step and its following pathways. J Phys Chem C 116:3503–3516. doi:10.1021/jp2088274

    Article  CAS  Google Scholar 

  32. Dai GL, Liu ZP, Wang WN, Lu J, Fan KN (2008) Oxidative dehydrogenation of ethane over V2O5(001): a periodic density functional theory study. J Phys Chem C 112:3719–3725. doi:10.1021/jp075843s

    Article  CAS  Google Scholar 

  33. Balcells D, Maseras F (2007) Computational approaches to asymmetric synthesis. New J Chem 31: 333–343 10.1039/B615528F

Download references

Acknowledgments

Support from the National Natural Science Foundation of China (21306230, 21203250, 21203251), Shandong Province Natural Science Foundation (ZR2014BM002, ZR2012BQ020), and the Fundamental Research Funds for the Central Universities to XFL (15CX08010A) are gratefully acknowledged. Prof. Guo (Taiyuan University of Technology) provided much appreciated help with calculations related to GD3 corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xufeng Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, Y., Chen, B., Lin, X. et al. Methane activation on nickel oxide clusters with a concerted mechanism: a density functional theory study of the effect of silica support. J Mol Model 22, 79 (2016). https://doi.org/10.1007/s00894-016-2947-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-2947-7

Keywords

Navigation