Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 78, Issue 1, pp 33–45 | Cite as

Utilization of DSC for Pharmaceutical crystal form quantitation

  • I. M. Vitez
Article

Abstract

The existence of multiple crystal forms in a drug substance poses interesting development challenges as the material is taken from discovery through formulation, manufacture and market. There are a number of factors why drug substances under development are screened for presence of multiple crystal forms. Different crystal forms may exhibit varied performance properties including bioavailability and solubility, as well as, differences in physical properties such as morphology and melting point. These properties can affect the design of the manufacturing processes for the bulk drug substance, the formulation and the performance of the drug product. This paper will focus on the application of differential scanning calorimetry (DSC) for the quantitation of pharmaceutical crystal forms. Feasibility studies were conducted on several pharmaceutical drug substances which were known to have multiple crystal forms, to determine if quantitative, semi-quantitative or limit of detection tests could be developed. The conclusion from these studies is that polymorphic crystal systems comprised of either close, or melting with decomposing, endotherms, competing transitions, or that contain sample contaminants, may not be optimum candidates for quantitation by DSC. Conversely, crystal systems that contain polymorphs that exhibit well-resolved endothermic or exothermic transitions, for either solvated vs. unsolvated species or both unsolvated, may be excellent candidates for crystal form quantitation by DSC.

DSC polymorphs crystal forms pharmaceuticals quantitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Giron and C. Goldbronn, J. Thermal Anal., 44 (1995) 217.Google Scholar
  2. 2.
    J. Van Rompay, J. Pharm. Biomed. Anal., 4 (1986) 725.CrossRefGoogle Scholar
  3. 3.
    M. S. Nagarsenker and S. D. Garad, Int. J. Pharm., 160 (1998) 251.CrossRefGoogle Scholar
  4. 4.
    Y. Ueno, E. Yonemochi, Y. Tozuka, S. Yamamura, T. Oguchi and K. Yamamoto. J. Pharm. Pharmacol., 50 (1998) 1213.Google Scholar
  5. 5.
    Y. Guo, S. R. Byrn and G. Zografi, J. Pharm. Sci., 89 (2000) 128.CrossRefGoogle Scholar
  6. 6.
    H. Chan and I. Gonda, J. Pharm. Sci., 87 (1998) 647.CrossRefGoogle Scholar
  7. 7.
    V. Hill, D. Q. M. Craig and L. Feely, Int. J. Pharm., 161 (1998) 95.CrossRefGoogle Scholar
  8. 8.
    F. Damian, N. Blaton, L. Naesens, J. Balzarini, R. Kinget, P. Augustijns and G. Van den Mooter, Eur. J. Pharm. Sci. 10 (2000) 311.CrossRefGoogle Scholar
  9. 9.
    H. Larhrib, X. M. Zeng, G. P. Martin, C. Marriott and J. Pritchard, Int. J. Pharm., 191 (1999) 1.CrossRefGoogle Scholar
  10. 10.
    S. Lerdkanchanaporn and D. Dollimore, Thermochim. Acta., 71 (2000) 357.Google Scholar
  11. 11.
    T. Durig and A. R. Fassihi, Int. J. Pharm., 97 (1993) 161.CrossRefGoogle Scholar
  12. 12.
    K. J. Hartauer and J. K. Guillory, Drug. Dev. Ind. Pharm., 17 (1991) 617.Google Scholar
  13. 13.
    P. Mura, M. T. Faucci, A. Manderioli, S. Furlanetto and S. Pinzauti, Drug Dev. Ind. Pharm., 24 (1998) 747.CrossRefGoogle Scholar
  14. 14.
    S. Venkataram, M. Khohlokwane and S. H. Wallis, Drug Dev. Ind. Pharm., 21 (1995) 847.Google Scholar
  15. 15.
    P. Mura, A. Manderioli, G. Bramanti, S. Furlanetto and S. Pinzauti, Int. J. Pharm., 119 (1995) 71.CrossRefGoogle Scholar
  16. 16.
    S. Y. Lin, K. S. Chen and H. H. Teng, J. Microencap., 16 (1999) 769.CrossRefGoogle Scholar
  17. 17.
    K. R. Morris, M. G. Fakes, A. B. Thakur, A. W. Newman, A. K. Singh, J. J. Venit, C. J. Spagnuolo and A. Serajuddin, Int. J. Pharm., 105 (1994) 209.CrossRefGoogle Scholar
  18. 18.
    P. L. Gould, Int. J. Pharm., 33 (1986) 201.CrossRefGoogle Scholar
  19. 19.
    D. Giron and C. Goldbronn, J. Thermal. Anal., 48 (1997) 473.CrossRefGoogle Scholar
  20. 20.
    G. Pyramides, J. W. Robinson and S. W. Zito, J. Pharm. Biomed. Anal., 13 (1995) 102.CrossRefGoogle Scholar
  21. 21.
    R. Harris, R. Yeung, R. B. Lamont, R. W. Lancaster, S. M. Lynn and S. E. Staniforth, J. Chem. Soc., Perkin Trans., 2 (1997) 2653.Google Scholar
  22. 22.
    A. Adam, L. Schrimpl and P. C. Schmidt, Drug. Dev. Ind. Pharm., 26 (2000) 477.CrossRefGoogle Scholar
  23. 23.
    A. Burger, J. Henck, S. Hetz, J. Rollinger, A. Weissnicht and H. Stottner, J. Pharm. Sci., 4 (2000) 457.CrossRefGoogle Scholar
  24. 24.
    L. Yu, G. Stephenson, C. Mitchell, C.A. Bunnell, S. Snorek, J. J. Bowyer, T. Borchardt, J. Stowell and S. R. Byrn, J. Am. Chem. Soc., 122 (2000) 585.CrossRefGoogle Scholar
  25. 25.
    U. Griesser, A. Burger and K. Mereiter, J. Pharm. Sci., 3 (1997) 352.CrossRefGoogle Scholar
  26. 26.
    I. Vitez, A. Newman, M. Davidovich and C. Kiesnowski, Thermochim. Acta, 324 (1998) 187.CrossRefGoogle Scholar
  27. 27.
    B. Perrenot and G. Widmann, Thermochim. Acta, 234 (1994) 31.CrossRefGoogle Scholar
  28. 28.
    D. Giron, M. Draghi, C. Goldbronn, S. Pfeffer and P. Piechon, J. Therm. Anal., 49 (1997) 913.CrossRefGoogle Scholar
  29. 29.
    D. Giron-Forest, C. Goldbronn and P. Piechon, J. Pharm. Biomed. Anal., 7 (1989) 1421.CrossRefGoogle Scholar
  30. 30.
    J. A. Reffner and R. G. Ferrillo, J. Thermal Anal., 34 (1988) 19.CrossRefGoogle Scholar
  31. 31.
    D. Giron, Am. Pharm. Rev., 3 (2000) 43.Google Scholar
  32. 32.
    T. L. Threlfall, Analyst, 10 (1995) 2435.CrossRefGoogle Scholar
  33. 33.
    J. I. Wells, Pharmaceutical Preformulation: The Physicochemical Properties of Drug Substances, Ellis Horwood Limited, Chichester, England 1988, pp. 86-91.Google Scholar
  34. 34.
    J. M. Rollinger and A. Burger, J. Therm. Anal. Cal., 68 (2002) 361.CrossRefGoogle Scholar
  35. 35.
    M. Greman, F. Vrecer and A. Meden, J. Therm. Anal. Cal., 68 (2002) 373.CrossRefGoogle Scholar
  36. 36.
    H. Takahashi, T. Takenishi and N. Nagashima, Bull. Chem. Soc. Japan, 35 (1962) 923.CrossRefGoogle Scholar
  37. 37.
    W. C. Kidd, P. Varlashkin and C. Li, Powder Diffr., 8 (1993) 180.Google Scholar
  38. 38.
    F. A. Chrzanowski, B. J. Fegely, W. R. Sisco and M. P. Newton, J. Pharm. Sci., 10 (1984) 1448.Google Scholar
  39. 39.
    R. Gimet and A. T. Luong, J. Pharm. Biomed. Anal., 5 (1987) 205.CrossRefGoogle Scholar
  40. 40.
    C. M. Deeley, R. A. Spragg and T. L. Threfall, Spectrochim. Acta, 9/10, 47A (1991) 1217.Google Scholar
  41. 41.
    K. J. Hartauer, E. S. Miller and J. K. Guillory, Int. J. Pharm., 85 (1992) 163.CrossRefGoogle Scholar
  42. 42.
    D. Bugay, A. Newman and W. P. Findlay, J. Pharm. Biomed. Anal., 15 (1996) 49.CrossRefGoogle Scholar
  43. 43.
    D. Doff, F. L. Browmen and O. I. Corrigan, Analyst, 111 (1986) 179.CrossRefGoogle Scholar
  44. 44.
    F. Langkilde, J. Sjoblom. L. Tekenbergs-Hjelte and J. Mrak, J. Pharm. Biomed. Anal., 15 (1997) 687.CrossRefGoogle Scholar
  45. 45.
    S. Lindenbaum and S. E. McGraw, Pharm. Manuf., 1 (1985) 27.Google Scholar
  46. 46.
    J. K. Guillory and D. M. Erb, Pharm. Manuf., 2 (1985) 28.Google Scholar
  47. 47.
    I. Peter, Pharm. Biomed. Anal., 4 (2000) 592.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publisher/Akadémiai Kiadó 2004

Authors and Affiliations

  • I. M. Vitez
    • 1
  1. 1.Materials Science GroupBristol-Myers Squibb Pharmaceutical Research Institute New BrunswickUSA E-mail

Personalised recommendations