Skip to main content
Log in

The purification and characterisation of 4-chlorobenzoate:CoA ligase and 4-chlorobenzoyl CoA dehalogenase from Arthrobacter sp. strain TM-1

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

4-Chlorobenzoate:CoA ligase, the first enzyme in the pathwayfor 4-chlorobenzoate dissimilation, has been partially purifiedfrom Arthrobacter sp. strain TM-1, by sequential ammoniumsulphate precipitation and chromatography on DEAE-Sepharoseand Sephacryl S-200. The enzyme, a homodimer of subunitmolecular mass approximately 56 kD, is dependent onMg2+-ATP and coenzyme A, and produces 4-chlorobenzoyl CoA and AMP. Besides Mg2+, Mn2+, Co2+, Fe2+ and Zn2+ are also stimulatory, but not Ca2+. Maximal activity is exhibited at pH 7.0 and 25 °C. The ligase demonstrates broad specificity towards otherhalobenzoates, with 4-chlorobenzoate as best substrate.The apparent Michaelis constants (Km) of the enzymefor 4-chlorobenzoate, CoA and ATP were determined as3.5, 30 and 238 μM respectively. 4-ChlorobenzoylCoA dehalogenase, the second enzyme, has been purified tohomogeneity by sequential column chromatography onhydroxyapatite, DEAE-Sepharose and Sephacryl S-200. It isa homotetramer of 33 kD subunits with an isoelectric pointof 6.4. At pH 7.5 and 30 °C, Km andkcat for 4-CBCoA are 9 μM and1 s-1 respectively. The optimum pH is 7.5, andmaximal enzymic activity occurs at 45 °C. Theproperties of this enzyme are compared with those ofthe 4-chlorobenzoyl CoA dehalogenases from Arthrobactersp. strain 4-CB1 and Pseudomonas sp. strain CBS-3, whichdiffer variously in their N-terminal amino acid sequences, optimalpH values, pI values and/or temperatures of maximal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed M & Focht DD (1973) Degradation of polychlorinated biphenyls by two species of Achromobacter. Can. J.Microbiol. 19: 47–52

    Google Scholar 

  • Ajithkumar PV & Kunhi AAM (2000) Pathways for 3-chloro-and 4-chlorobenzoate degradation in Pseudomonas aeruginosa 3mT. Biodegradation 11: 247–261

    Google Scholar 

  • Bradford, MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254

    Google Scholar 

  • Chae JC & Kim CK (1997) Dechlorination of 4-chlorobenzoate by Pseudomonas sp. DJ-12. Kor. J. Microbiol. 35: 290–294

    Google Scholar 

  • Chae JC, Kim Y, Min KH, Kim YC & Kim CK (1999) Cloning and sequencing of the fcbB gene encoding 4-chlorobenzoatecoenzyme A dehalogenase from Pseudomonas sp. DJ-12. Mol. Cells 9: 225–229

    Google Scholar 

  • Chang K, Liang P, Beck W, Scholten JD & Dunaway-Mariano D (1992) Isolation and characterisation of the three polypeptide components of 4-chlorobenzoate dehalogenase from Pseudomonas sp. strain CBS-3. Biochemistry 31: 5605–5610

    Google Scholar 

  • Crooks GP & Copley SD (1994) Purification and characterisation of 4-chlorobenzoyl CoA dehalogenase from Arthrobacter sp. strain 4-CB1. Biochemistry 33: 11645–11649

    Google Scholar 

  • Evans CG, Herbert D & Tempest DW (1970) The continuous cultivation of microorganisms. II. In: Construction of a Chemostat. Methods in Microbiology, Vol. 2 (pp 278–324). Academic Press, London

    Google Scholar 

  • Gartemann K-H, Fiedler J, Schmitz A, Zellermann E-M & Eichenlaub R (1998) GenBank Accession Number: AF042490

  • Hartmann J, Reineke W & Knackmus, H-J (1979) Metabolism of 3-chloro-, 4-chloro-and 3,5-dichlorobenzoate by a pseudomonad. Appl. Environ. Microbiol. 37: 421–428

    Google Scholar 

  • Hützinger O & Veerkamp W (1981) Xenobiotic chemicals with pollution potential. In: Microbial Degradation of Xenobiotics and Recalcitrant Compounds. FEMS Symp. 12: 3–45

    Google Scholar 

  • Klages U & Lingens F (1979) Degradation of 4-chlorobenzoic acid by a Nocardia sp. FEMS Microbiol. Lett. 6: 201–203

    Google Scholar 

  • Klages U & Lingens F (1980) Degradation of 4-chlorobenzoic acid by a Pseudomonas sp. Zbl. Bakt. Hyg. I. Abt. Orig. C1: 215–223

    Google Scholar 

  • Laemmli, UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Google Scholar 

  • Löffler F & Müller R (1991) Identification of 4-chlorobenzoylcoenzyme A as intermediate in the dehalogenation catalyzed by 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS-3. FEBS Lett. 290: 224-226

    Google Scholar 

  • Löffler F, Müller R & Lingens F (1991) Dehalogenation of 4-chlorobenzoate by 4-chlorobenzoate dehalogenase from Pseudomonas sp. strain CBS3: an ATP/coenzyme A dependent reaction. Biochem. Biophys. Res. Comm. 176: 1106–1111

    Google Scholar 

  • Löffler F, Müller R & Lingens F (1992) Purification and properties of 4-halobenzoate-coenzyme A ligase from Pseudomonas sp. CBS3. Biol. Chem. Hoppe-Seyler 373: 1001–1007

    Google Scholar 

  • Löffler F, Lingens F & Müller R (1995) Dehalogenation of 4-chlorobenzoate: Characterisation of 4-chlorobenzoyl coenzyme A dehalogenase from Pseudomonas sp. CBS3]. Biodegradation 6: 203–212.

    Google Scholar 

  • Marks, TS, Smith, ARW & Quirk, AV (1984a) Degradation of 4-chlorobenzoic acid by Arthrobacter sp. strain TM-1. Appl. Environ. Microbiol. 48: 1020–1025

    Google Scholar 

  • Marks TS, Wait R, Smith ARW & Quir, AV (1984b) The origin of oxygen incorporated during the dehalogenation/hydroxylation of 4-chlorobenzoate by an Arthrobacter sp. strain TM-1. Biochem. Biophys. Res. Commun. 124: 669–674

    Google Scholar 

  • Merkel SM, Eberhard AE, Gibson J & Harwood CS (1989) Involvement of coenzyme A thioesters in anaerobic metabolism of 4-hydroxybenzoate by Rhodopseudomonas palustris. J. Bacteriol. 171: 1–7

    Google Scholar 

  • Müller R, Thiele J, Klages U & Lingens F (1984) Incorporation of [18O]-water into 4-hydroxybenzoic acid in the reaction of 4-chlorobenzoate dehalogenase from Pseudomonas sp. Strain CBS3. Biochem. Biophys. Res. Commun. 124: 178–182

    Google Scholar 

  • Müller R, Oltmanns RH & Lingens F (1988) Enzymatic dehalogenation of 4-chlorobenzoate by extracts from Arthrobacter sp. strain SU DSM 20407. Biol. Chem. Hoppe-Seyler 369: 567–571

    Google Scholar 

  • Peyton TO (1984) Biological disposal of hazardous waste. Enzym. Micro. Tech. 6: 146–154

    Google Scholar 

  • Quinn JA, McKay DB & Entsch B (2001) Analysis of the pobA and pobR genes controlling expression of p-hydroxybenzoate hydroxylase in Azotobacter chroococcum. Gene 264: 77–85 (GenBank Accession Number: AF019891)

    Google Scholar 

  • Reinecke W, Jeenes DJ, Williams PA & Knackmuss H-J (1982) TOL plasmid pWWO in constructed halobenzoate-degrading Pseudomonas strains: prevention of meta-pathway. J. Bacteriol. 150: 195–201

    Google Scholar 

  • Reinecke W & Knackmuss H-J (1979) Construction of haloaromatics-utilizing bacteria. Nature 277: 385–386

    Google Scholar 

  • Reinecke W & Knackmuss H-J (1980) Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B13 derivatives. J. Bacteriol. 142: 467–473

    Google Scholar 

  • Schmitz A, Gartemann K-H, Fiedler J, Grund E & Eichenlaub R (1992) Cloning and sequence analysis of genes for dehalogenation of 4-chlorobenzoate from Arthrobacter sp. strain SU. Appl. Environ. Microbiol. 58: 4068–4071

    Google Scholar 

  • Seibold B, Matthes M, Eppink MH, Lingens F, van Berkel WJ & Müller R (1996) 4-Hydroxybenzoate hydroxylase from Pseudomonas sp. CBS3. Purification, characterisation, gene cloning, sequence analysis and assignment of structural features determining the coenzyme specificity. Eur. J. Biochem. 239: 469–478 (GenBank Accession Number: X74827)

    Google Scholar 

  • Sheets TJ, Smith JW & Kaufman DD (1968) Persistence of benzoic acids and phenylacetic acids in soils. Weed Science 16: 217–222

    Google Scholar 

  • Shimao M, Onishi S, Mizumori S, Kato N & Sakazawa C (1989) Degradation of 4-chlorobenzoate by facultatively alkalophilic Arthrobacter sp. strain SB8. Appl. Environ. Microbiol. 55: 478–482

    Google Scholar 

  • Smith RJ (1991) The purification of an aryl dehalogenase from Arthrobacter strain TM-1. Ph.D. thesis. Thames Polytechnic, London

    Google Scholar 

  • van den Tweel WJJ, ter Burg WJJ, Kok JB & de Bont JAM (1986) Bioformation of 4-hydroxybenzoate from 4-chlorobenzoate by Alcaligenes denitrificans NTB-1. Appl. Microbiol. Biotech. 25: 289–294

    Google Scholar 

  • Zaitsev GM & Karasevich YN (1981a) Utilisation of 4-chlorobenzoic acid in Arthrobacter globiformis. Microbiology (Russia) 50: 23–27

    Google Scholar 

  • Zaitsev GM & Karasevich YN (1981b) Preparative metabolism of 4-chlorobenzoic acid in Arthrobacter globiformis. Microbiology (Russia) 50: 287–291

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Marks, T.S., Poh, R.P.C. et al. The purification and characterisation of 4-chlorobenzoate:CoA ligase and 4-chlorobenzoyl CoA dehalogenase from Arthrobacter sp. strain TM-1. Biodegradation 15, 97–109 (2004). https://doi.org/10.1023/B:BIOD.0000015614.94615.34

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOD.0000015614.94615.34

Navigation