Skip to main content
Log in

Purification, Gene Cloning, and Characterization of a Novel Halohydrin Dehalogenase from Agromyces mediolanus ZJB120203

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel halohydrin dehalogenase (HHDH), catalyzing the transformation of 1,3-dichloro-2-propanol (1,3-DCP) to epichlorohydrin (ECH), was purified from Agromyces mediolanus ZJB120203. The molecular mass of the enzyme was estimated to be 28 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). A 735-bp nucleotide fragment was obtained based on the N-terminal and internal amino acid sequences of the purified HHDH. The gene codes a protein sequence with 244 amino acid residues, and the protein sequence shows high similarity to Hhe AAD2 (HHDH from Arthrobacter sp. AD2), defined as Hhe AAm, which is the seventh reported HHDH. Expression of Hhe AAm was carried out in Escherichia coli and purification was performed by nickel-affinity chromatography. The recombinant HheAAm possessed an optimal pH of 8.5 and an optimal temperature of 50 °C and manifested a K m of 4.58 mM and a V max of 3.84 μmol/min/mg. The activity of Hhe AAm was not significantly affected by metal ions such as Zn2+, Ca2+, Cu2+, and EDTA, but was strongly inhibited by Hg2+ and Ag+. In particular, the Hhe AAm exhibits an enantioselectivity for the conversion of prochiral 1,3-DCP to (S)-ECH. The applications of the Hhe AAm as a catalyst for asymmetric synthesis are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schuhmacher, R., Nurmi-Legat, J., Oberhauser, A., Kainz, M., & Krska, R. (2005). Analytical and Bioanalytical Chemistry, 382, 366–371.

    Article  CAS  Google Scholar 

  2. de Jong, R. M., Tiesinga, J. J. W., Villa, A., Tang, L. X., Janssen, D. B., & Dijkstra, B. W. (2005). Journal of the American Chemical Society, 127, 13338–13343.

    Article  Google Scholar 

  3. Spelberg, J. H. L., Tang, L. X., van Gelder, M., Kellogg, R. M., & Janssen, D. B. (2002). Tetrahedron-Asymmetry, 13, 1083–1089.

    Article  Google Scholar 

  4. Spelberg, J. H. L., Vlieg, J. E. T. V., Tang, L. X., Janssen, D. B., & Kellogg, R. M. (2001). Organic Letters, 3, 41–43.

    Article  CAS  Google Scholar 

  5. You, Z. Y., Liu, Z. Q., & Zheng, Y. G. (2013). Applied Microbiology and Biotechnology, 97, 9–21.

    Article  CAS  Google Scholar 

  6. Bastos, F., Bessa, J. E., Pacheco, C. C., De Marco, P., Castro, P. M. L., Silva, M., & Jorge, R. F. (2002). Biodegradation, 13, 211–220.

    Article  CAS  Google Scholar 

  7. Kalogeris, E., Antzoulatos, O., Mamma, D., Hatzinikolaou, D. G., Christakopoulos, P., & Kekos, D. (2007). Chemical and Biochemical Engineering Quarterly, 21, 297–305.

    CAS  Google Scholar 

  8. Effendi, A. J., Greenaway, S. D., & Dancer, B. N. (2000). Applied and Environmental Microbiology, 66, 2882–2887.

    Article  CAS  Google Scholar 

  9. Higgins, T. P., Hope, S. J., Effendi, A. J., Dawson, S., & Dancer, B. N. (2005). Biodegradation, 16, 485–492.

    Article  CAS  Google Scholar 

  10. Kasai, N., Tsujimura, K., Unoura, K., & Suzuki, T. (1992). Journal of Industrial Microbiology, 10, 37–43.

    Article  CAS  Google Scholar 

  11. Nagasawa, T., Nakamura, T., Yu, F., Watanabe, I., & Yamada, H. (1992). Applied Microbiology and Biotechnology, 36, 478–482.

    Article  CAS  Google Scholar 

  12. Vandenwijngaard, A. J., Reuvekamp, P. T. W., & Janssen, D. B. (1991). Journal of Bacteriology, 173, 124–129.

    CAS  Google Scholar 

  13. Vlieg, J. E. T. V., Tang, L. X., Spelberg, J. H. L., Smilda, T., Poelarends, G. J., Bosma, T., van Merode, A. E. J., Fraaije, M. W., & Janssen, D. B. (2001). Journal of Bacteriology, 183, 5058–5066.

    Article  Google Scholar 

  14. de Jong, R. M., Kalk, K. H., Tang, L., Janssen, D. B., & Dijkstra, B. W. (2006). Journal of Bacteriology, 188, 4051–4056.

    Article  Google Scholar 

  15. de Jong, R. M., Tiesinga, J. J. W., Rozeboom, H. J., Kalk, K. H., Tang, L., Janssen, D. B., & Dijkstra, B. W. (2003). EMBO Journal, 22, 4933–4944.

    Article  Google Scholar 

  16. Tang, L. X., Jiang, R. X., Zheng, K., & Zhu, X. C. (2011). Enzyme and Microbial Technology, 49, 395–401.

    Article  CAS  Google Scholar 

  17. Xue, F., Liu, Z. Q., Zou, S. P., Wan, N. W., Zhu, W. Y., Zhu, Q., & Zheng, Y. G. (2014). Process Biochemistry, 49, 409–417.

    Article  CAS  Google Scholar 

  18. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  19. Bradford, M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  20. Quyen, D. T., Dao, T. T., & Nguyen, S. L. T. (2007). Protein Expression and Purification, 51, 133–140.

    Article  CAS  Google Scholar 

  21. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Journal of Molecular Biology, 215, 403–410.

    Article  CAS  Google Scholar 

  22. Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). Nucleic Acids Research, 31, 3784–3788.

    Article  CAS  Google Scholar 

  23. Gouet, P., Robert, X., & Courcelle, E. (2003). Nucleic Acids Research, 31, 3320–3323.

    Article  CAS  Google Scholar 

  24. Yin, C. M., Zheng, L. S., Chen, L. G., Tan, Q., Shang, X. D., & Ma, A. M. (2014). Applied Biochemistry and Biotechnology, 172, 2119–2131.

    Article  CAS  Google Scholar 

  25. Fiser, A., & Sali, A. (2003). Macromolecular Crystallography, Pt D, 374, 461–491.

    Article  CAS  Google Scholar 

  26. Osterberg, F., Morris, G. M., Sanner, M. F., Olson, A. J., & Goodsell, D. S. (2002). Proteins: Structure, Function, and Genetics, 46, 34–40.

    Article  CAS  Google Scholar 

  27. Nishimura, A., Morita, M., Nishimura, Y., & Sugino, Y. (1990). Nucleic Acids Research, 18, 6169–6169.

    Article  CAS  Google Scholar 

  28. Greenfield, N. J. (2006). Nature Protocols, 1, 2876–2890.

    Article  CAS  Google Scholar 

  29. Yu, F., Nakamura, T., Mizunashi, W., & Watanabe, I. (1994). Bioscience, Biotechnology, and Biochemistry, 58, 1451–1457.

    Article  CAS  Google Scholar 

  30. You, Z. Y., Liu, Z. Q., Zheng, Y. G., & Shen, Y. C. (2013). Journal of Industrial Microbiology & Biotechnology, 40, 29–39.

    Article  CAS  Google Scholar 

  31. Lozada-Ramirez, J. D., Sanchez-Ferrer, A., & Garcia-Carmona, F. (2013). Applied Biochemistry and Biotechnology, 170, 639–653.

    Article  CAS  Google Scholar 

  32. Nakamura, T., Nagasawa, T., Yu, F. J., Watanabe, I., & Yamada, H. (1994). Applied and Environmental Microbiology, 60, 1297–1301.

    CAS  Google Scholar 

  33. Liu, Z. Q., Zhang, L. P., Cheng, F., Ruan, L. T., Hu, Z. C., Zheng, Y. G., & Shen, Y. C. (2011). Catalysis Communications, 16, 133–139.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21176224), 973 Program (No. 2011CB710806), National Major Project of Scientific Instruments Development of China (No.2012YQ150087), and Natural Science Foundation of Zhejiang Province of China (No. Z4080032 and R3110155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guo Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, F., Liu, ZQ., Wan, NW. et al. Purification, Gene Cloning, and Characterization of a Novel Halohydrin Dehalogenase from Agromyces mediolanus ZJB120203. Appl Biochem Biotechnol 174, 352–364 (2014). https://doi.org/10.1007/s12010-014-1111-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1111-z

Keywords

Navigation