Skip to main content
Log in

Non-Muscarinic- and Non-Adrenergic-Mediated Effects of Lindane on Phosphoinositide Hydrolysis in Rat Brain Cortex Slices

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The influence of lindane upon phosphatidylinositol hydrolysis in rat brain cortex slices has been investigated using anion-exchange chromatography in order to separate the water-soluble inositol metabolites. Acetylcholine, noradrenaline, and lindane induce the accumulation of myo-[2-3H]inositol as the water-soluble inositol metabolites. However, the cholinergic muscarinic antagonist atropine inhibited the stimulatory response of carbachol, but practically unmodified the effect that lindane has on inositol phosphate production. Also, prazosin anti-α1 adrenoreceptors blocked noradrenaline-induced phosphoinositide hydrolysis, but had no effect on lindane-induced increase of inositol phosphate levels. The results suggest that lindane does not exert a general effect on the receptor-stimulated formation of inositol phosphates by both muscarinic and α1-adrenergic agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Joy, R. M., 1982. Mode of action of lindane, dieldrin and related insecticides in the central nervous system. Neurobehav. Toxicol. Teratol. 4:813–823.

    Google Scholar 

  2. Joy, R. M., and Albertson, T. E. 1987. Interactions of lindane with synaptically mediated inhibition and facilitation in the dentate gyrus. Neurotoxicology 8:529–542.

    Google Scholar 

  3. Joy, R. M. 1982. Chlorinated hydrocarbon insecticides. In: Pesticides and Neurological Diseases (D. J. Ecobichon, R. M. Joy, eds.), CRC Press, Boca Raton, FL, pp. 91–150.

    Google Scholar 

  4. Woolley, D., Zimmer, L., Hasan, Z., and Swanson, K. 1984. Do some insecticides and heavy metals produce long-term potentiation in the limbic system? In: Cellular and Molecular Neurotoxicology (T. Narahashi, ed.), Raven Press, NY, pp. 45–69.

    Google Scholar 

  5. Publicover, S. J., and Duncan, C. J. 1979. The action of lindane in accelerating the spontaneous release of transmitter at the frog neuromuscular junction. Schmiedebergs Arch. Pharmac. 381:179–182.

    Google Scholar 

  6. Woolley, D., Zimmer, L., Dodge, D., and Swanson, K. 1985. Effects of lindane type insecticides in mammals: unsolved problems. Neurotoxicology 6:165–192.

    Google Scholar 

  7. Hokin, M. R., and Brown, D. F. 1969. Inhibition by gamma-hexachlorocyclohexane of acetylcholine-stimulated phosphatidylinositol synthesis in cerebral cortex slices and of phosphatidic acid-inositol transferase in cerebral cortex particulate fractions. J. Neurochem. 16:475–483.

    Google Scholar 

  8. Pulido, J. A., Del Hoyo, N., and Pérez-Albarsanz, M. A. 1992. The effect of different hexachlorocyclohexanes and cyclodienes on glucose uptake and inositol phospholipid synthesis in rat brain cortex. Life Sci. 50:1585–1596.

    Google Scholar 

  9. Del Hoyo, N., Pulido, J. A., and Pérez-Albarsanz, M. A. 1993. Effect of lindane on phosphatidylinositol synthesis by cerebral cortex after acute and subchronic treatment. Int. J. Biochem. 25:1849–1852.

    Google Scholar 

  10. Senar, S., Recio, M. N., and Pérez-Albarsanz, M. A. 1994. Lindane affects phosphoinositide turnover through a different mechanism of phosphatidylinositol synthesis inhibition in rat renal proximal tubule cell culture. Cell. Signal. 6:433–438.

    Google Scholar 

  11. Fisher, D. B., and Mueller, G. C. 1971. Gamma-hexachlorocyclohexane inhibits the initiation of lymphocyte growth by phytohemagglutinin. Biochem. Pharmacol. 20:2515–2518.

    Google Scholar 

  12. Hoffmann, R., Erzberger, P., Frank, W., and Ristow, H. J. 1980. Increased phosphatidylinositol synthesis in rat embryo fibroblasts after growth stimulation and its inhibition by δ-hexachlorocyclohexane. Biochim. Biophys. Acta 618:282–292.

    Google Scholar 

  13. Ristow, H. J., Messmer, T. O., Walter, S., and Dieter, P. 1980. Stimulation of DNA synthesis and myoinositol incorporation in mammalian cells. J. Cell Physiol. 103:263–269.

    Google Scholar 

  14. Vu, N. D., Chepko, G., Zelenka, P. 1983. Decreased turnover of phosphatidylinositol accompanies in vitro differentiation of embryonic chicken lens epithelial cells into lens fibers. Biochim. Bophys. Acta 750:105–111.

    Google Scholar 

  15. Crouch, M. F., and Roberts, M. L. 1985. The effects of gamma-hexachlorocyclohexane on amylase secretion and inositol phospholipid metabolism in mouse pancreatic acini. Biochim. Biophys. Acta 844:149–157.

    Google Scholar 

  16. Parries, G. S., and Hokin-Neaverson, M. 1985. Inhibition of phosphatidylinositol synthase and other membrane-associated enzymes by stereoisomers of hexachlorocyclohexane. J. Biol. Chem. 260:2687–2693.

    Google Scholar 

  17. Berridge, M. J. 1993. Inositol trisphosphate and calcium signalling. Nature 361:315–325.

    Google Scholar 

  18. Holian, A., and Marchiarullo, M. A., and Stickle, D. F. 1984. Gamma-Hexachlorocyclohexane activation of alveolar macrophage phosphatidylinositol cycle, calcium mobilization and O2 production. FEBS Lett. 176:151–154.

    Google Scholar 

  19. Tusell, J. M., Vendrell, M., Serratosa, J., and Trullas, R. 1992. Lindane-induced convulsions in NMRI and OFI mice: antagonism with (+)MK-801 and voltage-dependent calcium channel blockers. Brain Res. 593:209–214.

    Google Scholar 

  20. Joy, R. M., and Burns, V. W. 1988. Exposure to lindane and two other hexachlorocyclohexane isomers increases free intracellular calcium levels in neurohybridoma cells. Neurotoxicology 9:637–644.

    Google Scholar 

  21. Hawkinson, J. E., Shull, L. R., and Joy, R. M. 1989. Effects of lindane on calcium fluxes in synaptosomes. Neurotoxicology 10:29–40.

    Google Scholar 

  22. Cristofol, R. M., Rodríguez-Farré, E., and Sanfeliu, C. 1993. Effects of gamma and delta hexachlorocyclohexane isomers on inositol phosphate formation in cerebral cortex and hippocampus slices from developing and adult rat. Neurotoxicology 14:451–458.

    Google Scholar 

  23. Del Hoyo, N., Pulido, J. A., and Pérez-Albarsanz, M. A. 1993. Characterization of phosphoinositide hydrolysis products induced by hexachlorocyclohexane isomers in rat brain cortex. Biosci. Rep. 13:119–126.

    Google Scholar 

  24. Challiss, R. A. J., Batty, I. H., and Nahorski, S. R. 1988. Mass measurements of inositol(1,4,5)trisphosphate in rat cerebral cortex slices using a radioreceptor assay: effects of neurotransmitters and depolarization. Biochem. Biophys. Res. Commun. 157:684–691.

    Google Scholar 

  25. Beridge, M. J., Dawson, R. M. C., Downes, C. P., Heslop, J. P., and Irvine, P. F. 1983. Changes in the levels of inositol phosphates after agonist dependent hydrolysis of membrane phosphoinositides. Biochem. J. 212:437–482.

    Google Scholar 

  26. Erneux, C., Delvaux, A., Moreau, C., and Dumont, J. E. 1987. The dephosphorylation pathway of D-myo-inositol 1,3,4,5-tetrak-isphosphate in rat brain. Biochem. J. 247:635–639.

    Google Scholar 

  27. Berridge, M. J., and Irvine, R. F. 1989. Inositol phosphates and cell signalling. Nature 341:197–205.

    Google Scholar 

  28. English, D., Schell, M., and Gabig, T. G. 1986. Reversible activation of the neutrophil superoxide generating system by hexachlorocyclohexane; correlation with effects on a subcellular superoxide-generating fraction. J. Immunol. 137:283–290.

    Google Scholar 

  29. Vohland, H. W., Portig, J., and Stein, K. 1981. Neuropharmacological effects of isomers of hexachlorocyclohexane. 1. Protection against petylenetetrazol-induced convulsions. Toxicol. Appl. Pharmacol. 57:425–438.

    Google Scholar 

  30. Tusell, J. M., Suñol, C., Gelpi, E., and Rodríguez-Farré, E. 1987. Relationship between lindane concentration in blood and brain and convulsant response in rats after oral or intraperitoneal administration. Arch. Toxicol. 60:432–437.

    Google Scholar 

  31. Cristòfol, R. M., and Rodríguez-Farré, E. 1991. Differential presynaptic effects of hexachlorocyclohexane isomers on noradrenaline release in cerebral cortex. Life Sci. 49num. 15:1111–1119.

    Google Scholar 

  32. Walton, J. 1985. Paroxymal and convulsive disorders. In: Brain's diseases of the nervous system, J Walton, ed. Oxford University Press, Oxford, pp. 609–635.

    Google Scholar 

  33. Nahorski, S. R., Jenkinson, S., and Challiss, R. A. J. 1992. Disruption of phosphoinositide signalling by lithium. Biochem. Soc. T. 20:430–434.

    Google Scholar 

  34. Olney, J. W., de Gubareff, T., and Labruyere, J. 1983. Seizurerelated brain damage induced by cholinergic agents. Nature 301:520–522.

    Google Scholar 

  35. Savolainen, K., Hirvonen, M. R., and Naarala, J. 1994. Phosphoinositide second messengers in cholinergic excitotoxicity. Neurotoxicology 15:493–502.

    Google Scholar 

  36. Forray, C., and El-Fakahany, E. E. 1990. On the involvement of multiple muscarinic receptor subtypes in the activation of phosphoinositide metabolism in rat cerebral cortex. Mol. Pharmacol. 37:893–902.

    Google Scholar 

  37. Sallés, J., Wallace, M. A., and Fain, J. N. 1993. Differential effects of alkylating agents on the multiple muscarinic receptor subtypes linked to activation of phospholipase C by carbachol in rat brain cortical membranes. J. Pharmacol. Exp. Ther. 264:521–529.

    Google Scholar 

  38. Candura, S. M., Tonini, M., Baiardi, P., Manzo, L., and Costa, L. G. 1995. Heterogeneity of cholinergic muscarinic receptors coupled to phosphoinositide metabolism in immature rat brain. Dev. Brain Res. 86:134–142.

    Google Scholar 

  39. Savolainen, K. M., Nelson, S. R., Samson, F. E., and Pazdernik, T. L. 1988. Soman-induced convulsions affect the inositol lipid signalling system: potentiation by lithium; attenuation by atropine and diazepan. Toxicol. Appl. Pharmacol. 96:305–314.

    Google Scholar 

  40. LaBella, F. S. 1983. Cell membrane receptors: gateway to endogenous medicinals. Can. J. Physiol. Pharmacol. 61:191–200.

    Google Scholar 

  41. Criswell, K. A., Stuenkel, E. L., and Loch-Caruso, R. 1994. Lindane increases intracellular calcium in rat myometrial smooth muscle cells through modulation of inositol 1,4,5-tris-phosphate-sensitive stores. J. Pharmacol. Exp. Ther. 270:1015–1024.

    Google Scholar 

  42. Criswell, K. A., Loch-Caruso, R., and Stuenkel, E. L. 1995. Lindane inhibition of gap junctional communication in myometrial myocytes is partially dependent on phosphoinositidegenerated second messengers. Toxicol. Appl. Pharmacol. 130:280–293.

    Google Scholar 

  43. Meade, C. J., Harvey, J., Boot, J. R., Turner, G. A., Bateman, P. E., and Osborne, D. J. 1984. Gamma-hexachlorocyclohexane stimulation of macrophage phospholipid hydrolysis and leukotriene production. Biochem. Pharmacol. 33:289–293.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pajuelo, L., Sánchez-Alonso, J.A., del Hoyo, N. et al. Non-Muscarinic- and Non-Adrenergic-Mediated Effects of Lindane on Phosphoinositide Hydrolysis in Rat Brain Cortex Slices. Neurochem Res 22, 57–62 (1997). https://doi.org/10.1023/A:1027377321041

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027377321041

Navigation