Skip to main content
Log in

Allosteric effect of serotonin and mianserin on the kinetics of specific [3H]-ligand binding to adrenergic and muscarinic receptors in the rat cerebral cortex membranes

  • Animal and Human Physiology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The effects of serotonin receptor activation (by serotonin) and inhibition (by mianserin) on the properties of the α1-, α2-adrenoreceptors, and muscarinic cholinergic receptors in subcellular membrane fractions from the rat cerebral cortex were studied. Experimental data on the kinetics of specific antagonists binding to adrenergic and muscarinic receptors were analyzed by graphical and mathematical methods. The results suggest the presence of allosteric (cross-talk) interaction. In the control, α1- and α2-adrenoreceptors were represented by a single pool, and muscarinic receptors, by two pools. Two pools of adrenoreceptors with different affinity were detected against the background of serotonin. It was found that mianserin induces the formation of two pools of only α2-receptors and muscarinic receptors are represented by two pools differing in the main parameters, such as dissociation constants and adrenoreceptor concentrations, in the control and experimental groups. It was shown that the allosteric effect of serotonin and mianserin is manifested in the inhibition of muscarinic receptors. It was assumed that the adrenergic and cholinergic receptors exist as dimers. The interaction between the adrenergic, cholinergic, and serotonergic systems is likely to be implemented at the cell membrane level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birthelmer, A., Stemmelin, J., Jackisch, R., and Cassel, J.C., Presynaptic modulation of acetylcholine, noradrenaline, and serotonin release in the hippocampus of aged rats with various levels of memory impairments, Brain Res. Bull., 2003, vol. 15, no. 60(3), pp. 283–296.

    Article  Google Scholar 

  • Blier, P. and Szabo, S.T., Potential mechanisms of action of atypical antipsychotic medications in treatment-resistant depression and anxiety, J. Clin. Psychiatry, 2005, vol. 66, no. 8, pp. 30–40.

    CAS  PubMed  Google Scholar 

  • Bonaventure, P., Nepomuceno, D., Hein, L., et al., Radioligand binding analysis of knockout mice reveals 5-hydroxytryptamine (7) receptor distribution and uncovers 8-hydroxy-2-(di-N-propylamino)tetralin interaction with alpha(2) adrenergic receptors, Neuroscience, 2004, vol. 124, no. 4, pp. 901–911.

    Article  CAS  PubMed  Google Scholar 

  • Borodinsky, L.N., Belgasem, Y.H., Swapna, I., and Sequerra, E.B., Dynamic regulation of neurotransmitter specification: relevanse to nervous system homeostasis, Neuropharmacology, 2014, vol. 78, pp. 75–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carlson, B.B., Wisnieski, A., and Salamone, J.D., Local injections of the 5-hydroxytryptamine antagonist mianserin into substantia nigra pars reticulate block tremulous jaw movements in rats: studies with a putative model of parkinsonian tremor, Psychopharmacology, 2003, vol. 165, no. 3, pp. 229–237.

    CAS  PubMed  Google Scholar 

  • Cornil, C.A. and Ball, G.F., Interplay among catecholamine systems: dopamine binds to alpha2-adrenergic receptors in birds and mammals, J. Comp. Neurol., 2008, vol. 511, no. 5, pp. 610–627.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diaz-Crus, A., Vilchis-Landeros, M.M., Guinsberg, R., et al., NOX2 activated by α1-adrenoceptors modulates hepatic metabolic routes stimulated by β-adrenoceptors, Free Radic. Res, 2011, vol. 45, nos. 11–12, pp. 1366–1378.

    Article  Google Scholar 

  • Diez-Alarcia, R., Pilar-Cuellar, F., Panigua, M.A., et al., Pharmacological characterization and autoradiographic distribution of alpha2-adrenoceptor antagonist [3H]RX 821002 binding sites in the chicken brain, Neuroscience, 2006, vol. 141, no. 1, pp. 357–369.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, M. and Webb, E.C. Enzymes, 3rd ed., New York: Longman, 1979.

    Google Scholar 

  • Dupont, L.J., Pype, J.I., Demedts, M.G., et al., The effects of 5-HT on cholinergic contraction in human airways in vitro, Eur. Resp. J., 1999, vol. 14, no. 3, p. 642.

    Article  CAS  Google Scholar 

  • Frånberg, O., Marcus, M.M., and Svensson, T.H., Involvement of 5-HT2A receptor and α2-adrenoceptor blockade in the asenapine-induced elevation of prefrontal cortical monoamine outflow, Synapse, 2012, vol. 66, no. 7, pp. 650–660.

    Article  PubMed  Google Scholar 

  • Henn, S.W. and Henn, F.A., The identification of subcellular fractions of the central nervous system, in Handbook of Neurochemistry, Lajtha, A., Ed., New York: Plenum Press, 1982, pp. 147–161.

    Google Scholar 

  • Kalkman, H.O., van Gelderen, E.M., Timmermans, P.B., and van Zwieten, P.A., K effects of (+) and (−) mianserin on alpha adrenoceptors and tyramine induced tachycardia in rats, Eur. J. Pharmacol., 1983, vol. 90, nos. 2–3, pp. 221–226.

    Article  CAS  PubMed  Google Scholar 

  • Kwok, Y.H. and Mitchelson, F., The effect of some antidepressants on prejunctional muscarinic receptors on the sympathetic nerves of the isolated rabbit ear artery, Naunyn Schmiedebergs Arch. Pharmacol., 1982, vol. 320, no. 1, pp. 14–19.

    Article  CAS  PubMed  Google Scholar 

  • Lowry, O.H., Rosenbrough, N.J., Farr, A.L., and Randall, R.I.J., Protein measurement with the Folin phenol regent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    CAS  PubMed  Google Scholar 

  • Manukhin, B.N., Nesterova, L.A., Smurova, E.A., and Kichiculova, T.P., An approach to analysis of radiolabeled ligand interactions with specific receptors, Eur. J. Pharmacol., 1999, vol. 386, nos. 2–3, pp. 273–288.

    Google Scholar 

  • Manukhin, B.N., Analysis of ligand-receptor interactions at molecular to organismal levels, Ross. Fiziol. Zh., 2000, vol. 86, no. 10, pp. 1220–1232.

    CAS  Google Scholar 

  • Manukhin, B.N. and Nesterova, L.A., Effect of nitric oxide on the [3H]quinuclidinyl benzilate binding to muscarinic cholinergic receptors of rat cerebral cortex membranes, Biol. Membr., 2004, vol. 21, no. 1, pp. 19–23.

    Article  CAS  Google Scholar 

  • Manukhin, B.N. and Nesterova, L.A., Allosteric modulation of the [3H]quinuclidinyl benzylate binding to M-cholinoreceptors in rat cerebral cortex by adrenotropic agents, Biochemistry (Moscow), Ser. A: Membr. Cell Biol., 2009, vol. 3, no. 2, pp. 151–157.

    Article  Google Scholar 

  • Manukhin, B.N., Berdysheva, L.V., Boiko, O.V., and Nesterova, L.A., Similarities and differences in the effect of cocaine on α-adrenergic and muscarinic response, Biol. Bull. (Moscow), 2011, vol. 36, no. 3, pp. 266–276.

    Article  Google Scholar 

  • Manukhin, B.N. and Nesterova, L.A., Allosteric effects of atropine and carbachol on the activity of α2-adrenoceptors in rat brain cortex membranes, Biochemistry (Moscow), Ser. A: Membr. Cell Biol., 2011, vol. 5, no. 4, pp. 350–355.

    Google Scholar 

  • Matsumoto, M., Togashi, H., Mori, K., et al., Evidence for involvement of central 5-HT(4) receptors in cholinergic function associated with cognitive processes: behavioral, electrophysiological, and neurochemical studies, J. Pharmacol. Exp. Ther., 2001, vol. 296, no. 3, pp. 676–682.

    CAS  PubMed  Google Scholar 

  • Nesterova, L.A. and Manukhin, B.N., Muscarinic cholinoceptor agonists and antagonists are modulators of the activity of α1-adrenoceptors in the membranes of rat cerebral cortex, Biochemistry (Moscow), Ser. A: Membr. Cell Biol., 2010, vol. 4, no. 2, pp. 206–211.

    Article  Google Scholar 

  • Obata, H., Saito, S., Sasaki, M., and Goto, F., Interactions of 5-HT2 receptor agonists with acetylcholine in spinal analgesic mechanisms in rats with neuropathic pain, Brain Res., 2003, vol. 965, nos. 1–2, pp. 114–120.

    Article  CAS  PubMed  Google Scholar 

  • Ramage, A.G. and Villalón, C.M., 5-Hydroxytryptamine and cardiovascular regulation, Trends Pharmacol. Sci., 2008, vol. 29, no. 9, pp. 472–481.

    Article  CAS  PubMed  Google Scholar 

  • Rashid, M., Muntasir, H.A., Watanabe, M., et al., Assessment of affinities and dissociation potencies of several 5-HT (2) antagonists to and from M(2) muscarinic receptor in rat heart membranes, Biol. Pharm. Bull., 2003, vol. 28, no. 8, pp. 1184–1187.

    Article  Google Scholar 

  • Small, K.M., Schwarb, M.R., Glinka, C., et al., Alpha1A- and alpha2C-adrenergic receptors form homo-and heterodimers: the heterodimeric state impairs agonist-promoted GRK phosphorylation and beta-arrestin recruitment, Biochemistry, 2006, vol. 45, no. 15, pp. 4760–4767.

    Article  CAS  PubMed  Google Scholar 

  • Sorbi, C., Franchini, S., Tait, A., et al., 1,3-Dioxolane-based ligands as rigid analogues of naftopidil: structure-affinity/activity relationships at alpha1 and 5-HT1a receptors, Chem. Med. Chem., 2009, vol. 4, no. 3, pp. 393–399.

    Article  CAS  PubMed  Google Scholar 

  • Trincavelly, M.L., Daniele, S., Orlandini, E., et al., A new dopamine receptor agonist allosterically modulates A(2A) adenosine receptor signaling by interacting with the A(2A) D-receptor heteromer, Cell Signal., 2012, vol. 24, no. 4, pp. 951–960.

    Google Scholar 

  • Uberti, M.A., Hall, R.A., and Minneman, K.P., Subtype-specific dimerization of alpha1-adrenoceptors: effects on receptor expression and pharmacological properties, Mol. Pharmacol., 2003, vol. 64, no. 6, pp. 1379–1390.

    Article  CAS  PubMed  Google Scholar 

  • Watts, S.W., Fink, G.D., Silver, P.J., and Cusshing, D.J., Interaction of the beta adrenergic receptor antagonist bucindolol with serotonergic receptors, J. Cardiovasc. Pharmacol., 2000, vol. 35, pp. 29–36.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, F., Filipeanu, C.M., Duvernay, M.T., and Wu, G., Cell-surface targeting of alpha2-adrenergic receptors—inhibition by transport deficient mutant through dimerization, Cell Signal., 2006, vol. 18, no. 3, pp. 318–327.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Nesterova.

Additional information

Original Russian Text © B.N. Manukhin, L.A. Nesterova, 2015, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2015, No. 2, pp. 169–179.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manukhin, B.N., Nesterova, L.A. Allosteric effect of serotonin and mianserin on the kinetics of specific [3H]-ligand binding to adrenergic and muscarinic receptors in the rat cerebral cortex membranes. Biol Bull Russ Acad Sci 42, 129–138 (2015). https://doi.org/10.1134/S1062359015020053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359015020053

Keywords

Navigation