Skip to main content
Log in

Amounts and Distribution of Phases in Sulfide Plus Oxide Scales on Iron

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Pure iron was exposed at 800°C to flowing, catalyzed-gas mixtures of N2/CO2/CO/SO2 adjusted to control the partial pressures of SO2, S2 and O2. The equilibrium gas compositions were such that iron oxide was thermodynamically stable with respect to sulfide. The reaction product scale was invariably a mixture of oxide plus sulfide, and grew according to parabolic kinetics at high PSO2 values and by linear kinetics in dilute gases. In both cases the reactant gas species was SO2, not molecular oxygen or sulfur. The relative amounts of sulfide and oxide corresponded to stoichiometric reaction of SO2 at high PSO2 values, but not in dilute gases. At low PSO2 values, the relationship between scale-sulfide volume fraction and PSO2 corresponded to two independent scale-SO2 reactions leading to oxide and sulfide growth. The two-phase mixture was lamellar, with platelets oriented approximately parallel to the mass-transfer direction. An inverse relationship between lamellar spacing and linear scaling rate is interpreted as evidence of a cooperative (cellular) growth mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Natesan, Corrosion 41, 646(1985).

    Google Scholar 

  2. F. Gesmundo, D. J. Young, and S. K. Roy, High Temp. Mater. Proc. 8, 149(1989).

    Google Scholar 

  3. M. F. Stroosnijder and W. J. Quadakkers, High Temp. Technol. 4, 141(1986).

    Google Scholar 

  4. H. J. Grabke, R. Lobnig, and P. Papaiacovou in: Selected Topics in High School Chemistry: Defect Chemistry of Solids, Ø. Johannesen, and A. G. Andersen (eds.), (Elsevier, New York, 1989) p. 263.

    Google Scholar 

  5. J. Stringer in: High Temperature Oxidation and Sulphidation Processes, J. D. Embury (ed.) (Pergamon Press, New York, 1990) p. 257.

    Google Scholar 

  6. W. T. Bakker and J. Stringer, Mater. High Temp. 14, 101(1997).

    Google Scholar 

  7. F. H. Stott and J. F. Norton, Mater. High Temp. 14, 132(1997).

    Google Scholar 

  8. T. Flatley and N. Birks, J. Iron Steel Inst. 209, 523(1971).

    Google Scholar 

  9. A. Rahmel, Werkst. Korros. 23, 272(1972).

    Google Scholar 

  10. G. McAdam and D. J. Young, Oxid. Met. 37, 281(1992).

    Google Scholar 

  11. G. McAdam and D. J. Young, Oxid. Met. 37, 301(1992).

    Google Scholar 

  12. J. Gilewicz-Wolter, Oxid. Met. 11, 81(1977).

    Google Scholar 

  13. F. Gesmundo, C. DeAsmundis, S. Merlo, and C. Bottino, Werkst. Korros. 30, 179(1972).

    Google Scholar 

  14. K. Kurokawa, T. Narita, and K. Nishida in: Proc. 3rd JIM Int. Symp. High Temperature Corrosion of Metals and Alloys, Japan Inst. Metals, Sendai, (1983) p. 51.

    Google Scholar 

  15. A. Skalli, A. Galerie, and M. Caillet, Mater. Chem. Phys., 10, 599(1984).

    Google Scholar 

  16. F. C. Yangn and D. P. Whittle in: Proc. Conf. Corrosion in Fossil Fuel Systems, I. G. Wright (ed.) (Electrochemical Society, New York, 1983) p. 111.

    Google Scholar 

  17. R. A. Muessner and C. E. Birchenall, Corrosion, 13, 667(1957).

    Google Scholar 

  18. W. K. Chen and N. L. Peterson, J. Phys. Chem. Solids 36, 1097(1975).

    Google Scholar 

  19. R. Lepsoe, Ind. Eng. Chem. 32, 910(1940).

    Google Scholar 

  20. J. B. Ferguson and J. Ames, J. Amer. Chem. Soc., 40, 1626(1918).

    Google Scholar 

  21. G. McAdam and D. J. Young, Corros. Sci., 38, 247(1996).

    Google Scholar 

  22. D. J. Young and S. Watson, Oxid. Met., 44, 239(1995).

    Google Scholar 

  23. M. H. Davies, M. T. Simnad, and C. E. Birchenall, Trans. AIME, 191, 889(1951).

    Google Scholar 

  24. D. R. Gaskell (ed.), An Introduction to Transport Phenomena in Materials Engineering, (Macmillan, New York, 1992).

    Google Scholar 

  25. M. Hillert, (ed.), The Mechanisms of Phase Transformations in Crystalline Solids (Institute of Metals, London, 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unsworth, J., Young, D.J. Amounts and Distribution of Phases in Sulfide Plus Oxide Scales on Iron. Oxidation of Metals 60, 447–465 (2003). https://doi.org/10.1023/A:1027334819454

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027334819454

Navigation