Skip to main content
Log in

Effect of Sulfate Anion Additions on the Phase Composition and Structure of Titanium Dioxide

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Methods of X-ray diffraction analysis, electron microscopy, and microanalysis were used to examine the phase composition and structure of sulfate-anion-containing titanium dioxide samples into which a modifier was introduced by impregnation and by the sol-gel technique. It was demonstrated that the modification of titanium dioxide by the impregnation method results in that an ordered surface structure is formed, which is constituted by accreted crystallites 8–10 μm in size. In this structure, sulfate anions are stabilized at interblock boundaries. Titanium dioxide modified by the sol-gel method has the form of loosely packed coarse aggregates with sizes of about 30–32 μm. The appearance of the titanium tetrasulfide phase mostly situated on the surface was observed in its composition. The microstructural features and, in particular, enrichment of the surface of a sol-gel sample with sulfur and a decrease in dispersity are determined by the catalyst preparation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fedotova, M.P., Voronova, G.A., Emel’yanova, E.Yu., et al., Russ. J. Phys. Chem., 2009, vol. 83, no. 8, pp. 1371–1375.

    Article  CAS  Google Scholar 

  2. Panov, A.G., Ivanov, A.V., Kustov, L.M., and Kazanskii, V.B., Kinet. Kataliz, 1997, vol. 38, no. 3, pp. 468–473.

    Google Scholar 

  3. Kuznetsov, P.N., Obukhova, A.V., Kuznetsova, L.I., and Mikhlin, Yu.L., Petrol. Chem., 2017, vol. 57, no. 3, pp. 292–298.

    Google Scholar 

  4. Mantilla, A., Tzompantzi, F., Ferrat, G., et al., Catal. Today, 2005, vols. 107–108, pp. 707–712.

    Google Scholar 

  5. Smolikov, M.D., Kazantsev, K.V., Zatolokina, E.V., et al., Kinet. Kataliz, 2010, vol. 51, no. 4, pp. 608–618.

    Google Scholar 

  6. Smolikov, M.D., Bikmetova, L.I., Kir’yanov, D.I., et al., Kataliz Prom–sti, 2014, no. 5, pp. 44–48.

    Google Scholar 

  7. Makshina, E.B., Kustov, A.L., Romanovskii, B.V., et al., Russ. J. Phys. Chem., 2004, vol. 78, no. 5, pp. 726–730.

    Google Scholar 

  8. Kuznetsova, L.I., Kazbanova, A.V., and Kuznetsov, P.N., Petrol. Chem., 2012, no. 5, pp. 341–345.

    Article  CAS  Google Scholar 

  9. Kuznetsova, L.I., Kazbanova, A.V., and Kuznetsov, P.N., Petrol. Chem., 2013, no. 5, pp. 322–325.

    Article  CAS  Google Scholar 

  10. Sannikov, A.L., Fundamental Aspects of Formation of Catalysts Base on Sulfated Zirconium Dioxide and Their Activity in Isomerization of Light Alkanes, Cand. Sci. Dissertation, Krasnoyarsk, 2007.

    Google Scholar 

  11. Lavrenov, A.V., Physicochemical Aspects of Formation of Catalysts Based on Borate- and Sulfate-containing Aluminum and Zirconium Oxides for Obtaining Ecologically Clean Motor Fuels and Light Alkenes, Doctor Sci. Dissertation, Omsk, 2017.

    Google Scholar 

  12. Lavrenov, A.V., Kazakov, M.O., Duplyakin, V.K., and Likholobov, V.A., Petrol. Chem., 2009, vol. 49, no. 3, pp. 236–242.

    Article  CAS  Google Scholar 

  13. Kazakov, M.O., Lavrenov, A.V., Mikhailova, M.S., et al., Kinet. Kataliz, 2010, vol. 51, no. 3, pp. 457–462.

    Google Scholar 

  14. Kazakov, M.O., Lavrenov, A.V., Danilova, I.G., et al., Kinet. Kataliz, 2011, vol. 52, no. 4, pp. 583–588.

    Google Scholar 

  15. Kazakov, M.O., Lavrenov, A.V., Bel’skaya, O.B., et al., Kinet. Kataliz, 2012, vol. 53, no. 1, pp. 104–109.

    Google Scholar 

  16. Salaev, M.R., Guseinova, E.A., Alieva, N.T., and Adzhamov, K.Yu., Khim. Tekhnol. Topliv Masel, 2018, no. 2, pp. 8–12.

    Google Scholar 

  17. Salaev, M.R., Guseinova, E.A., Al’-Battbotti, M.R., and Adzhamov, K.Yu., Vestn. Azerbaidzhan. Inzhener. Akad., 2018, no. 1, pp. 25–32.

    Google Scholar 

  18. Odegova, G.V. and Slavinskaya, E.M., Kinet. Kataliz, 2004, vol. 45, no. 1, pp. 146–151.

    Google Scholar 

  19. Shutilov, A.A., Zenkovets, G.A., Gavrilov, V.Yu., and Tsybulya, S.V., Kinet. Kataliz, 2011, no. 1, pp. 113–121.

    Google Scholar 

  20. Zenkovets, G.A., Tsybulya, S.V., Burgina, E.B., and Kryukova, G.N., Kinet. Kataliz, 1999, vol. 40, no. 4, pp. 623–627.

    Google Scholar 

  21. Murashkevich, A.N., Alisienok, O.A., Zharskii, I.M., et al., Kolloid. Zh., 2014, vol. 76, no. 4, pp. 506–512.

    Google Scholar 

  22. Iveronova, V.I. and Revkevich, G.P., Teoriya rasseyaniya rentgenovskikh luchei (Theory of X-Ray Scattering), Moscow: Mosk. Univ., 1978.

    Google Scholar 

  23. Khalyavka, T.A., Tsyba, N.N., Kamyshan, S.V., and Kapinus, E.I., Russ. J. Phys. Chem., 2015, vol. 89, no. 1, pp. 133–136.

    Article  CAS  Google Scholar 

  24. Zenkovets, G.A., Gavrilov, V.Yu., Shutilov, A.A., and Tsybulya, S.V., Kinet. Kataliz, 2009, vol. 50, no. 5, pp. 790–797.

    Google Scholar 

  25. Ismagilov, Z.R., Kuznetsov, V.V., Okhlopkova, L.B., et al., Oksidy titana, tseriya, tsirkoniya, ittriya, alyuminiya. Svoistva, primenenie i metody polucheniya (Titanium, Cerium, Zirconium, Yttrium, and Aluminum Oxides: Properties, Application, and Methods for Obtaining), Novosibirsk: Izd. Sib. Otd. Ross. Akad. Nauk, 2010.

    Google Scholar 

  26. Okhlopkova, L.B., Matus, E.V., Ismagilov, I.Z., et al., Kinet. Kataliz, 2013, vol. 54, no. 4, pp. 540–548.

    Google Scholar 

  27. Geguzin, Ya.E., Fizika spekaniya (Physics of Sintering), Moscow: Nauka, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Guseinova.

Additional information

Original Russian Text © M.R. Salaev, E.A. Guseinova, M.R. Al-Battbotti, K.Yu. Adzhamov, F.A. Amirov, A.A. Gasanov, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 6, pp. 786−792.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salaev, M.R., Guseinova, E.A., Al-Battbotti, M.R. et al. Effect of Sulfate Anion Additions on the Phase Composition and Structure of Titanium Dioxide. Russ J Appl Chem 91, 908–914 (2018). https://doi.org/10.1134/S1070427218060046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218060046

Navigation