Skip to main content

Kinetics of Dephosphorization of Iron Carbon Alloys: The Importance of Competing Reactions, Slag Properties and CO Bubbles

  • Conference paper
  • First Online:
Extraction 2018

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 116 Accesses

Abstract

Data on the kinetics and thermodynamics of dephosphorization are analyzed in terms of the dynamic partition ratio, determined by a combination of slag thermodynamic properties and the balance of oxygen supply and consumption. A recently developed phosphate capacity correlation is combined with data on kinetics to quantify the most significant parameters in controlling the interfacial oxygen potential. The role of slag composition, entrained gas fraction and temperature are discussed in addition to metal carbon and sulfur content. It is demonstrated that the mass transport of oxygen in the slag is enhanced by factors increasing conductivity and inhibited by entrained gas. The mass transfer of phosphorus in the metal is described considering surface renewal induced by CO bubbles .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mori K, Fukami Y, Kawai Y (1988) Trans ISIJ 28:315–318

    Article  CAS  Google Scholar 

  2. Wei P, Sano M, Hirasawa M, Mori K (1993) ISIJ Int 33:479–487

    Article  CAS  Google Scholar 

  3. Monaghan BJ, Pomfret RJ, Coley KS (1998) Metall Trans B 29B:111–118

    Article  CAS  Google Scholar 

  4. Shibata E, Sun H, Mori K (1999) Metall Trans B 30B:279–286

    Article  CAS  Google Scholar 

  5. Kitamura S, Kitamura T, Shibata K, Mizukami Y, Mukawa S, Nakagawa J (1991) ISIJ Int 31(11):1322–1328

    Article  CAS  Google Scholar 

  6. Diao J, Liu X, Zhang T, Xie B (2015) Int J Miner Metall Mater 22(3):249–253

    Article  CAS  Google Scholar 

  7. Hewage AK, Rout BK, Brooks G, Naser J (2016) Ironmak Steelmak 43(5):358–370

    Article  CAS  Google Scholar 

  8. Manning CP, Fruehan RJ (2013) Metall Trans B 44B:37–44

    Article  Google Scholar 

  9. Miyanoto K, Naito K, Kitagawa I, Matsuo M (2009) Tetsu-to Hagane 95(3):199–206

    Article  Google Scholar 

  10. Wei P, Ohya M, Hirasawa M, Sano M, Mori K (1993) ISIJ Int 33(8):847–854

    Article  CAS  Google Scholar 

  11. Gu K, Dogan N, Coley KS (2017) Metall Trans B 48B:2595–2596

    Article  Google Scholar 

  12. Barati M, Coley K (2006) Metall Trans B 37B:51–60

    Article  CAS  Google Scholar 

  13. Wiencke J, Lavelaine H, Panteix PJ, Petitjean C, Rapin C (2018) J Appl Electrochem 48(1):115–126

    Article  CAS  Google Scholar 

  14. Liu Y, Liu J, Zhang G, Zhang J, Chou K (2018) High Temp. Mater Proc 37(2):121–125

    Article  CAS  Google Scholar 

  15. Karimi-Sibaki E, Kharicha A, Wu M, Ludwig A, Bohacek J (2018) Appl Math Comput. https://doi.org/10.1016/j.amc.2018.01.008

    Article  Google Scholar 

  16. Drain PB, Monaghan BJ, Zhang G, Longbottom RJ, Chapman MW, Chew SJ (2017) Ironmak Steelmak 44(10):721–731

    Article  CAS  Google Scholar 

  17. Tranell G, Ostrovski O, Jahanshahi S (2002) Metall Trans B 33B:61–67

    Article  CAS  Google Scholar 

  18. Liu J, Zhang G, Wu Y, Chou K (2016) Metall Trans B 47B:798–803

    Article  Google Scholar 

  19. Gu K, Dogan N, Coley KS (2017) Metall Trans B 48B:2984–2991

    Article  Google Scholar 

  20. Higbie R (1935) Trans Am Inst Chem Eng 31:365–389

    CAS  Google Scholar 

  21. Gu K, Dogan N, Coley KS (2018) Metall Mater Trans B. 49B:1119–1135

    Google Scholar 

  22. Gu K, Dogan N, Coley KS (2018) Steel research international. 89:17450

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kezhuan Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, K., Drain, P.B., Monaghan, B.J., Coley, K.S. (2018). Kinetics of Dephosphorization of Iron Carbon Alloys: The Importance of Competing Reactions, Slag Properties and CO Bubbles. In: Davis, B., et al. Extraction 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95022-8_53

Download citation

Publish with us

Policies and ethics