Skip to main content
Log in

Peptide Conjugates of Oligonucleotides As Enhanced Antisense Agents

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The use of synthetic oligonucleotides and their analogs to block gene expression by binding the complementary RNA sequences in cells, the antisense principle, has been limited by poor uptake of the agents by cells in culture. This review describes attempts to harness by chemical conjugation the ability of certain peptides that may cross membranes to enhance the cellular uptake of oligonucleotides. These include fusogenic and hydrophobic peptides, nuclear localization signals, receptor targeting and translocating peptides, and various combinations. We also outline briefly some popular methods of peptide–oligonucleotide conjugation. Finally, we review the use of noncovalent peptide additives and the recent studies of conjugates of peptide nucleic acid (PNA) with peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Zamecnik, P.C. and Stephenson, M.L., Proc. Natl. Acad. Sci. USA, 1978, vol. 75, pp. 280–284.

    PubMed  Google Scholar 

  2. Crooke, S.T. and Lebleu, B., Antisense Research and Applications, Boca Raton: CRC, 1993.

    Google Scholar 

  3. Chadwick, D.J. and Cardew, G., Oligonucleotides as Therapeutic Agents, Chichester: John Wiley, 1997.

    Google Scholar 

  4. Stein, C.A. and Krieg, A.M., Applied Antisense Oligonucleotide Technology, New York: Wiley-Liss, 1998.

    Google Scholar 

  5. Loke, S.L., Stein, C.A., Zhang, X.H., Mori, K., Nakanishi, M., Subasinghe, C., Cohen, J.S., and Neckers, L.M., Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 3474–3478.

    PubMed  Google Scholar 

  6. Yakubov, L.A., Deeva, E.A., Zarytova, V.F., Ivanova, E.I., Ryte, A.S., Yurchenko L.F., and Vlassov, V.V., Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 6454–6458.

    PubMed  Google Scholar 

  7. Bennett, C.F., Chiang, M.-Y., Chan, H., Shoemaker, J.E.E., and Mirabelli, C.K., Mol. Pharmacol., 1992, vol. 41, pp. 1023–1033.

    PubMed  Google Scholar 

  8. Letsinger, R.L., Zhang, G., Sun, D.K., Ikeuchi, T., and Sarin, P.S., Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 6553–6556.

    PubMed  Google Scholar 

  9. Krieg, A.M., Tonkinson, J., Matson, S., Zhao, Q., Saxon, M., Zhang, L.-M., Bhanjia, U., Yakubov, L., and Stein, C.A., Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 1048–1052.

    PubMed  Google Scholar 

  10. Shea, R.G., Marsters, J.C., and Bischofberger, N., Nucl. Acids Res., 1990, vol. 18, pp. 3777–3783.

    PubMed  Google Scholar 

  11. Manoharan, M., Johnson, L.K., Bennett, C.F., Vickers, T.A., Ecker, D.J., Cowsert, L.M., Freier, S.M., and Cook, P.D., Bioorg. Med. Chem. Lett., 1994, vol. 4, pp. 1053–1060.

    Google Scholar 

  12. Harrison, J.G. and Subramanian, S., Bioorg. Med. Chem. Lett., 1997, vol. 7, pp. 1041–1046.

    Google Scholar 

  13. Bonfils, E., Depierreux, C., Midoux, P., Monsigny, M., and Roche, A.C., Nucl. Acids Res., 1992, vol. 20, pp. 4621–4629.

    PubMed  Google Scholar 

  14. Jäschke, A., Fürste, J.P., Nordhoff, E., Hillenkamp, F., Cech, D., and Erdmann, V.A., Nucl. Acids Res., 1994, vol. 22, pp. 4810–4817.

    PubMed  Google Scholar 

  15. Kabanov, A.V., Vinogradov, S.V., and Alakhov, V.Y., Bioconj. Chem., 1995, vol. 6, pp. 639–643.

    Google Scholar 

  16. Manoharan, M., Antisense Research and Applications, Crooke, S.L. and Lebleu, B., Eds., Boca Raton: CRC, 1993, pp. 303–349.

    Google Scholar 

  17. Corey, C.R., J. Amer. Chem. Soc., 1995, vol. 117, pp. 9373–9374.

    Google Scholar 

  18. Eritja, R., Pons, A., Escarceller, M., Giralt, E., and Albericio, F., Tetrahedron, 1991, vol. 47, pp. 4113–4120.

    Google Scholar 

  19. Wei, Z., Tung, C.-H., Zhu, T., Dickerhof, W.A., Breslauer, K.J., Georgopoulos, D.E., Leibowitz, M.J., and Stein, S., Nucl. Acids Res., 1996, vol. 24, pp. 655–661.

    PubMed  Google Scholar 

  20. Zhu, T., Pooyan, S., Wei, Z., Leibowitz, M.J., and Stein, M.J., Antisense Nucl. Acid Drug. Dev., 1996, vol. 6, pp. 69–74.

    Google Scholar 

  21. de la Torre, B.G., Albericio, F., Saison-Behmoaras, E., Bachi, A., and Eritja, R., Bioconj. Chem., 1999, vol. 10, pp. 1005–1012.

    Google Scholar 

  22. Leonetti, J.-P., Degols, G., and Lebleu, B., Bioconj. Chem., 1990, vol. 1, pp. 149–153.

    Google Scholar 

  23. Haralambidis, J., Duncan, L., Angus, K., and Tregear, G.W., Tetrahedron Lett., 1987, vol. 28, pp. 5199–5202.

    Google Scholar 

  24. Juby, C.D., Richardson, C.D., and Brousseau, R., Tetrahedron Lett., 1991, vol. 32, pp. 879–882.

    Google Scholar 

  25. de La Torre, B.G., Avino, A., Tarrason, G., Piulats, J., Albericio, F., and Eritja, R., Tetrahedron Lett., 1994, vol. 35, pp. 2733–2736.

    Google Scholar 

  26. Truffert, J.-C., Lorthoir, O., Asseline, U., Thuong, N.T., and Brack, A., Tetrahedron Lett., 1994, vol. 35, pp. 2353–2356.

    Google Scholar 

  27. Bergmann, F. and Bannwarth, W., Tetrahedron, Lett., 1995, vol. 36, pp. 1839–1842.

    Google Scholar 

  28. Basu, S. and Wickstrom, E., Tetrahedron Lett., 1995, vol. 36, pp. 4943–4946.

    Google Scholar 

  29. Tetzlaff, C.N., Schwope, I., Bleczinski, C.F., Steinberg, J.A., and Richert, C., Tetrahedron Lett., 1998, vol. 39, pp. 4215–4218.

    Google Scholar 

  30. De Napoli, L., Messere, A., Montesarchio, D., Piccialli, G., Benedetti, E., Bucci, E., and Rossi, F., Bioorg. Med. Chem., 1999, vol. 7, pp. 395–400.

    PubMed  Google Scholar 

  31. Bongartz, J.P., Aubertin, A.M., Milhaud, P.G., and Lebleu, B., Nucl. Acids Res., 1994, vol. 22, pp. 4681–4688.

    PubMed  Google Scholar 

  32. Vivés, E. and Lebleu, B., Tetrahedron Lett., 1997, vol. 38, pp. 1183–1186.

    Google Scholar 

  33. Tung, C.-H., Rudolph, M.J., and Stein, S., Bioconj. Chem., 1991, vol. 2, pp. 464–465.

    Google Scholar 

  34. Harrison, J.G. and Balasubramanian, S., Nucl. Acids Res., 1998, vol. 26, pp. 3136–3145.

    PubMed  Google Scholar 

  35. Ede, N.J., Tregear, G.W., and Haralambidis, J., Bioconj. Chem., 1994, vol. 5, pp. 373–378.

    Google Scholar 

  36. Soukchareun, S., Haralambidis, J., and Tregear, G., Bioconj. Chemistry, 1998, vol. 9, pp. 466–475.

    Google Scholar 

  37. Arar, K., Aubertin, A.-M., Roche, A.-C., Monsigny, M., and Mayer, M., Bioconj. Chem., 1995, vol. 6, pp. 573–577.

    Google Scholar 

  38. Dawson, P.E., Muir, T.W., Clark-Lewis, I., and Kent, S.B.H., Science, 1994, vol. 266, pp. 776–779.

    PubMed  Google Scholar 

  39. McPherson, M., Wright, M.C., and Lohse, P.A., Syn. Lett, 1999, vol. S1, pp. 978–980.

    Google Scholar 

  40. Stetsenko, D.A. and Gait, M.J., J. Org. Chem., 2000, vol. 65, pp. 4900–4908.

    PubMed  Google Scholar 

  41. Stetsenko, D.A. and Gait, M.J., Nucl., Nucl. and Nucl. Acids, 2000 (in press).

  42. Bayard, B., Bisbal, C., and Lebleu, B., Biochemistry, 1986, vol. 25, pp. 3730–3736.

    PubMed  Google Scholar 

  43. Leonetti, J.-P., Degols, G., and Lebleu, B., Bioconj. Chem., 1990, vol. 1, pp. 149–153.

    Google Scholar 

  44. Lemaitre, M., Bayard, B., and Lebleu, B., Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 648–652.

    PubMed  Google Scholar 

  45. Degols, G., Leonetti, J.-P., Bekirane, M., Devaux, C., and Lebleu, B., Antisense Res. Dev., 1992, vol. 2, pp. 293–301.

    PubMed  Google Scholar 

  46. Degols, G., Devaux, C., and Lebleu, B., Bioconj. Chem., 1994, vol. 5, pp. 8–13.

    Google Scholar 

  47. Soukchareun, S., Tregear, G.W., and Haralambidis, J., Bioconj. Chem., 1995, vol. 6, pp. 43–53.

    Google Scholar 

  48. Pichon, C., Arar, K., Stewart, A.J., Dodon, M.D., Gazzolo, L., Courtoy, P.J., Mayer, R., Monsigny, M., and Roche, A.-C., Mol. Pharmacol., 1997, vol. 51, pp. 431–438.

    PubMed  Google Scholar 

  49. Basu, S. and Wickstrom, E., Bioconj. Chem., 1997, vol. 8, pp. 481–488.

    Google Scholar 

  50. Rajur, S.B., Roth, C.M., Morgan, J.R., and Yarmush, M.L., Bioconj. Chem., 1997, vol. 8, pp. 935–940.

    Google Scholar 

  51. Reed, M.W., Fraga, D., Schwartz, D.E., Scholler, J., and Hinrichson, R.D., Bioconj. Chem., 1995, vol. 6, pp. 101–108.

    Google Scholar 

  52. Zanta, M.A., Belguise-Valladier, P., and Behr, J.-P., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 91–96.

    PubMed  Google Scholar 

  53. Meunier, L., Mayer, R., Monsigny, M., and Roche, A.C., Nucl. Acids Res., 1999, vol. 27, pp. 2730–2736.

    PubMed  Google Scholar 

  54. Ciolina, C., Byk, G., Blanche, F., Thullier, V., Scherman, D., and Wils, P., Bioconj. Chem., 1999, vol. 10, pp. 49–55.

    Google Scholar 

  55. Derossi, D., Joliot, A.H., Chassaing, G., and Prochiantz, A., J. Biol. Chem., 1994, vol. 269, pp. 10444–10450.

    PubMed  Google Scholar 

  56. Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G., and Prochiantz, A., J. Biol. Chem., 1996, vol. 271, pp. 18188–18193.

    PubMed  Google Scholar 

  57. Allinquant, B., Hantraye, P., Mailleux, P., Moya, K., Bouillot, C., and Prochiantz, A., J. Cell Biol., 1995, vol. 128, pp. 919–927.

    PubMed  Google Scholar 

  58. Prochiantz, A., Curr. Opinion Neurobiol., 1996, vol. 6, pp. 629–634.

    Google Scholar 

  59. Derossi, D., Chassaing, G., and Prochiantz, A., Trends Cell Biol., 1998, vol. 8, pp. 84–87.

    PubMed  Google Scholar 

  60. Troy, C.M., Derossi, D., Prochiantz, A., Greene, L.A., and Shelanski, M.L., J. Neurosci., 1996, vol. 16, pp. 253–261.

    PubMed  Google Scholar 

  61. Vivés, E., Granier, C., Prevot, P., and Lebleu, B., Lett. Peptide Science, 1997, vol. 4, pp. 429–436.

    Google Scholar 

  62. Vivés, E., Brodin, P., and Lebleu, B., J. Biol. Chem., 1997, vol. 272, pp. 16010–16017.

    PubMed  Google Scholar 

  63. Schwarze, S.R., Ho, A., Vocero-Akbani, A., and Dowdy, S.F., Science, 1999, vol. 285, pp. 1569–1572.

    PubMed  Google Scholar 

  64. Chaloin, L., Vidal, P., Lory, P., Méry, J., Lautredou, N., Divita, G., and Heitz, F., Biochem. Biophys. Res. Comm., 1998, vol. 243, pp. 601–608.

    PubMed  Google Scholar 

  65. Antopolsky, M., Azhayeva, E., Tengvall, U., Auriola, S., Jääskeläinen, I., Rönkkö, S., Honkakoski, P., Urtti, A., Lönnberg, H., and Azhayev, A., Bioconj. Chem., 1999, vol. 10, pp. 598–606.

    Google Scholar 

  66. Wadhwa, M.S., Collard, W.T., Adami, R.C., Mckenzie, D.L., and Rice, K.G., Bioconj. Chem., 1997, vol. 8, pp. 81–88.

    Google Scholar 

  67. Wyman, T.B., Nicol, F., Zelphati, O., Scario, P.V., Plank, C., and Szoka, F.C., Biochemistry, 1997, vol. 36, pp. 3008–3017.

    PubMed  Google Scholar 

  68. Niidome, T., Ohmori, N., Ichinose, A., Wada, A., Mihara, H., Hirayama, T., and Aoyagi, H., J. Biol. Chem., 1997, vol. 272, pp. 15307–15312.

    PubMed  Google Scholar 

  69. Midoux, P., Kichler, A., Boutin, V., et al., Bioconj. Chem., 1998, vol. 9, pp. 260–267.

    Google Scholar 

  70. Ohmori, N., Niidome, T., Wada, A., Hirayama, T., Hatakeyama, T., and Aoyagi, H., Biochem. Biophys. Res. Comm., 1997, vol. 235, pp. 726–729.

    PubMed  Google Scholar 

  71. Pichon, C., Freulon, I., Midoux, P., Mayer, R., Monsigny, M., and Roche, A.-M., Antisense Nucl. Acid Drug. Dev., 1997, vol. 7, pp. 335–343.

    Google Scholar 

  72. Dokka, S., Toledo-Velasquez, D., Shi, X., Wang, L., and Rojanasukul, Y., Pharmaceut. Res., 1997, vol. 14, pp. 1759–1764.

    Google Scholar 

  73. Morris, M.C., Vidal, P., Chaloin, L., Heitz, F., and Divita, G., Nucl. Acids Res., 1997, vol. 25, pp. 2730–2736.

    PubMed  Google Scholar 

  74. Junghans, M., Kreuter, J., and Zimmer, A., Nucl. Acids Res., 2000, vol. 28, p. e45.

    PubMed  Google Scholar 

  75. Bachmann, A.S., Surovoy, A., Jung, G., and Moelling, K., J. Mol. Med., 1998, vol. 76, pp. 126–132.

    PubMed  Google Scholar 

  76. Murphy, J.E., Uno, T., Hamer, J.D., Cohen, F.E., Dwarkl, V., and Zuckerman, R.N., Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 1517–1522.

    PubMed  Google Scholar 

  77. Singh, D., Bisland, S.K., Kawamura, K., and Gariépy, J., Bioconj. Chem., 1998, vol. 10, pp. 745–754.

    Google Scholar 

  78. Simmons, C.G., Pitts, A.E., Mayfield, L.D., Shay, J.W., and Corey, D.R., Bioorg. Med Chem. Lett., 1997, vol. 7, pp. 3001–3006.

    Google Scholar 

  79. Pooga, M., Soomets, U., Hällbrink, M., Valkna, A., Saar, K., Rezaei, K., Kahl, U., Hao, J.-X., Xu, X.-J., Wiesenfeld-Hallin, Z., Hökfelt, T., Bartfai, T., and Langel, U., Nature Biotech., 1998, vol. 16, pp. 857–861.

    Google Scholar 

  80. Scarfi, S., Giovine, M., Gasparini, A., Damonte, G., Millo, E., Pozzolini, M., and Benatti, U., FEBS Lett., 1999, vol. 451, pp. 264–268.

    PubMed  Google Scholar 

  81. Aldrian-Herrada, G., Desarménien, M.G., Orcel, H., Boissin-Agasse, L., Méry, J., Brugidou, J., and Rabié, A., Nucl. Acids Res., 1998, vol. 26, pp. 4910–4916.

    PubMed  Google Scholar 

  82. Cutrona, G., Carpaneto, E.M., Ulivi, M., Roncella, S., Landt, O., Ferrarini, M., and Boffa, L.C., Nature Biotech., 2000, vol. 18, pp. 300–303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stetsenko, D.A., Arzumanov, A.A., Korshun, V.A. et al. Peptide Conjugates of Oligonucleotides As Enhanced Antisense Agents. Molecular Biology 34, 852–859 (2000). https://doi.org/10.1023/A:1026675725702

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026675725702

Navigation