J. Kaye, M. H. Ross, L. J. Romrell, and G. I. Kaye (1995). Female reproductive system. In M. H. Ross, L. J. Romrell, and K. Kaye (eds.), Histology: A Text and Atlas, Williams & Wilkins, Maryland, pp. 678–738.
Google Scholar
I. H. Russo and J. Russo (1978). Developmental stage of the rat mammary gland as determinant of its susceptibility to 7,12-dimethylbenz(a)anthracene. J. Natl. Cancer Inst.
61: 1439–1449.
Google Scholar
I. H. Russo and J. Russo (1996). Mammary gland neoplasia in long-term rodent studies. Environ. Health Perspect. 104:938–967.
Google Scholar
F. F. Bolander, Jr. (1990). Differential characteristics of the thoracic and abdominal mammary glands from mice. Exp. Cell Res.
189:142–144.
Google Scholar
M. J. Van Zwieten (1984). Normal anatomy and pathology of the rat mammary gland. In The Rat as Animal Model in Breast Cancer Research, Martinus Nijhoff, Boston, pp. 53–134.
Google Scholar
R. C. Hovey, T. B. McFadden, and R. M. Akers (1999). Regulation of mammary gland growth and morphogenesis by the mammary fat pad: A species comparison. J. Mammary Gland Biol. Neoplasia
4:53–68.
Google Scholar
K. R. Jeffers (1935). Cytology of the mammary gland of the albino rat I. Pregnancy, lactation and involution. Am. J. Anat.
56:257–278.
Google Scholar
D. R. Pitelka (1980). General morphology and histology of the adult gland. In The Mammary Gland, Plenum Press, New York, pp. 944–965.
Google Scholar
S. Nandi, R. C. Guzman, and J. Yang (1995). Hormones and mammary carcinogenesis in mice, rats, and humans: A unifying hypothesis. Proc. Natl. Acad. Sci.USA
92:3650–3657.
Google Scholar
W. Bocker, B. Bier, G. Freytag, B. Brommelkamp, E. D. Jarasch, G. Edel, B. Dockhorn-Dworniczak, and K. W. Schmid (1992). An immunohistochemical study of the breast using antibodies to basal and luminal keratins, alpha-smooth muscle actin, vimentin, collagen IV and laminin. Part I: Normal breast and benign proliferative lesions. Virchow's Arch. A
421:315–322.
Google Scholar
S. R. Dundas, M. G. Ormerod, B. A. Gusterson, and M. J. O'Hare (1991). Characterization of luminal and basal cells flow-sorted from the adult rat mammary parenchyma. J. Cell Sci.
100:459–471.
Google Scholar
K. C. Richardson (1949). Contractile tissues in the mammary gland, with special reference to myoepithelium in the goat. Proc. R. Soc. Lond.
136:30–45.
Google Scholar
R. Dulbecco, M. Unger, B. Armstrong, M. Bowman, and P. Syka (1983). Epithelial cell types and their evolution in the rat mammary gland determined by immunological markers. Proc. Natl. Acad. Sci. USA
80:1033–1037.
Google Scholar
R. Dulbecco, W. R. Allen, M. Bologna, and M. Bowman (1986). Marker evolution during the development of the rat mammary gland: Stem cells identified by markers and the role of myoepithelial cells. Cancer Res.
46:2449–2456.
Google Scholar
J. T. Emerman and A. W. Vogl (1986). Cell size and shape changes in the myoepithelium of the mammary gland during differentiation. Anat. Rec.
216:405–415.
Google Scholar
J. E. Ferguson, A. M. Schor, A. Howell, and M. W. Ferguson (1992). Changes in the extracellular matrix of the normal human breast during the menstrual cycle. Cell Tiss. Res.
268:167–177.
Google Scholar
J. R. Gordon and M. R. Bernfield (1980). The basal lamina of the postnatal mammary epithelium contains glycosaminoglycans in a precise ultrastructural organization. Dev. Biol.
74:118–135.
Google Scholar
M. Glukhova, V. Koteliansky, X. Sastre, and J.-P. Thiery (1995). Adhesion systems in normal breast and in invasive breast carcinoma. Am. J. Pathol.
146:706–716.
Google Scholar
G. K. Koukoulis, I. Virtanen, M. Korhonen, L. Laitinen, V. Quaranta, and V. E. Gould (1991). Immunohistochemical localization of integrins in the normal, hyperplastic and neoplastic breast. Correlations with their functions as receptors and cell adhesion molecules. Am. J. Clin. Pathol.
139:787–799.
Google Scholar
M. N. Gould, W. F. Biel, and K. H. Clifton (1977). Morphological and quantitative studies of gland formation from inocula of monodispersed rat mammary cells. Exp. Cell Res.
107: 405–416.
Google Scholar
K. H. Hollmann (1974). Cytology and fine structure of the mammary gland. In B. L. Larson (ed.), Lactation: A Comprehensive Treatise, Academic Press, New York, pp. 3–95.
Google Scholar
N. D. Kim and K. H. Clifton (1993). Characterization of rat mammary epithelial cell subpopulations by peanut lectin and anti-THY-1.1 antibody and study of flow-sorted cells in vivo. Exp. Cell Res.
207:74–85.
Google Scholar
I. H. Russo and J. Russo (1978). Developmental stage of the rat mammary gland as a determinant of its susceptibility to 7,12-dimethylbenz[a]anthracene. J. Natl. Cancer Inst.
61: 1439–1449.
Google Scholar
D. M. Moore, A. W. Vogl, K. Baimbridge, and J. T. Emerman (1987). Effect of calcium on oxytocin-induced contraction of mammary gland myoepithelium as visualized by NBDphalloidin. J. Cell Sci.
88:563–569.
Google Scholar
M. J. Warburton, D. Mitchell, E. J. Ormerod, and P. Rudland (1982). Distribution of myoepithelial cells and basement membrane proteins in the resting, pregnant, lactating, and involuting rat mammary gland. J. Histochem. Cytochem.
30:667–676.
Google Scholar
D. G. Fernig, J. A. Smith, and P. S. Rudland (1991). Relationship of growth factors and differentiation in normal and neoplastic development of the mammary gland. In M. Lippman and R. Dickson (eds.), Regulatory Mechanisms in Breast Cancer, Kluwer, Boston, pp. 47–78.
Google Scholar
C. M. Hughes and P. S. Rudland (1990). Appearance of myoepithelial cells in developing rat mammary glands identi-fied with the lectins Griffonia simplicifolia-1 and pokeweed mitogen. J. Histochem. Cytochem.
38:1647–1657.
Google Scholar
C. W. Turner (1932). The mammary glands. In E. Allen (ed.), Sex and Internal Secretions, Williams & Wilkins, Baltimore, pp. 544–583.
Google Scholar
J. Russo, K. L. Tay, and I. H. Russo (1982). Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Treat. Rep.
2:5–73.
Google Scholar
N. M. Brown and C. A. Lamartiniere (1995). Xenoestrogens alter mammary gland differentiation and cell proliferation in the rat. Environ. Health Perspect.
103:708–713.
Google Scholar
J. Russo and I. H. Russo (1978). DNA labeling index and structure of the rat mammary gland as determinants of its susceptibility to carcinogenesis. J. Natl. Cancer Inst.
61:1451–1457.
Google Scholar
E. J. Ormerod and P. S. Rudland (1984). Cellular composition and organization of ductal buds in developing rat mammary glands: Evidence for morphological intermediates between epithelial and myoepithelial cells. Am. J. Anat.
170:631–652.
Google Scholar
D. G. Fernig, J. A. Smith, and P. S. Rudland (1991). Relationship of growth factors and differentiation in normal and neoplastic development of the mammary gland. Cancer Treat. Res.
53:47–78.
Google Scholar
J. M. Williams and C. W. Daniel (1983). Mammary ductal elongation: Differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev. Biol.
97:274–290.
Google Scholar
K. Ota, A. Yokoyama, and Y. Shinde (1962). Effects of administration of oxytocin and prolactin on nucleic acids and phosphoprotein contents of mammary glands in lactating rats. Nature
195:77–78.
Google Scholar
R. C. Humphreys, M. Krajewska, S. Krnacik, R. Jaeger, H. Weiher, S. Krajewski, J. C. Reed, and J. M. Rosen (1996). Apoptosis in the terminal endbud of the murine mammary gland: A mechanism of ductal morphogenesis. Development
122:4013–4022.
Google Scholar
G. B. Silberstein and C. W. Daniel (1982). Elvax 40P implants: Sustained, local release of bioactive molecules influencing mammary ductal development. Dev. Biol.
93:272–278.
Google Scholar
G. B. Silberstein, P. Strickland, S. Coleman, and C. W. Daniel (1990). Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta1-growth-inhibited mouse mammary gland. J. Cell Biol.
110:2209–2219.
Google Scholar
W. Imagawa, J. Yang, R. Guzman, and S. Nandi (1994). Control of mammary gland development. In E. Knobil and J. D. Neill (eds.), The Physiology of Reproduction, Raven Press, New York, pp. 1033–1063.
Google Scholar
G. Chepko and G. H. Smith (1999). Mammary epithelial stem cells: Our current understanding. J. Mammary Gland Biol. Neoplasia
4:35–52.
Google Scholar
R. Dulbecco, M. Henahan, and B. Armstrong (1982). Cell types and morphogenesis in the mammary gland. Proc. Natl. Acad. Sci. USA
79:7346–7350.
Google Scholar
K. Joshi, J. A. Smith, N. Perusinghe, and P. Monoghan (1986). Cell proliferation in the human mammary epithelium:Differential contribution by epithelial and myoepithelial cells. Am. J. Pathol.
124:199–206.
Google Scholar
W. Imagawa, G. K. Bandyopadhyay, and S. Nandi (1990). Regulation of mammary epithelial cell growth in mice and rats. Endocrine Rev.
90:494–523.
Google Scholar
J. Russo, B. A. Gusterson, A. E. Rogers, I. H. Russo, S. R. Wellings, and M. J. Van Zwieten (1990). Comparative study of human and rat mammary tumorigenesis. Lab. Invest.
62:244–278.
Google Scholar
C. H. Knight and M. Peaker (1982). Development of the mammary gland. Reprod. Fertil.
65:521–536.
Google Scholar
C. W. Daniel, G. B. Silberstein, K. Van Hom, P. Strickland, and S. Robinson (1989). TGF-β1-induced inhibition of mouse mammary ductal growth: Developmental specificity and characterization. Dev. Biol.
135:20–30.
Google Scholar
G. B. Silberstein, K. C. Flanders, A. B. Roberts, and C. W. Daniel (1992). Regulation of mammary morphogenesis: Evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-beta1. Dev. Biol.
152:354–362.
Google Scholar
S. Klaus (1996). Functional differentiation of white and brown adipocytes. BioEssays
19:215–223.
Google Scholar
J. J. Elias, D. R. Pitelka, and R. C. Armstrong (1973). Changes in fat cell morphology during lactation in the mouse. Anat. Rec.
177:533–547.
Google Scholar
M. Matsumoto, H. Nishinakagawa, M. Kurohmaru, Y. Hayashi, and M. A. Awal (1995). Ultrastructural changes in fat cells and blood capillaries of the mammary gland in starved mice. J. Veterin. Med. Sci.
57:733–736.
Google Scholar
M. C. Neville, D. Medina, J. Monks, and R. C. Hovey (1998). The mammary fat pad. J. Mammary Gland Biol. Neoplasia
3:109–116.
Google Scholar
M. Matsumoto, H. Nishinakagawa, M. Kurohmaru, Y. Hayashi, and J. Otsuka (1992). Effects of estrogen and progesterone on the development of the mammary gland and the associated blood vessels in ovariectomized mice. J. Veterin. Med. Sci.
54:1117–1124.
Google Scholar
M. H. Ross, L. J. Romrell, and G. I. Kaye (1995). Cardiovascular system. In M. H. Ross, L. J. Romrell, and G. I. Kaye (eds.), Histology:AText and Atlas,Williams &Wilkins, Baltimore, pp. 302–328.
Google Scholar
Y. N. Sinha and H. A. Tucker (1966). Mammary gland growth of rats between 10 and 100 days of age. Am. J. Physiol.
210:601–605.
Google Scholar
A. T. Cowin (1949). The relative growth of the mammary gland in normal, gonadectomized and adrenalectomized rats. J. Endocrinol.
6:145–147.
Google Scholar
F. Bresciani (1968). Topography of DNA synthesis in the mammary gland of the C3H mouse and its control by ovarian hormones: An autoradiographic study. Cell Tiss. Kinet.
1:51–63.
Google Scholar
P. A. Masso-Welch, G. Verstovsek, K. Darcy, C. Tagliarino, and M. M. Ip (1998). Protein kinase C eta upregulation and secretion during postnatal rat mammary gland differentiation. Eur. J. Cell Biol.
77:48–59.
Google Scholar
P. A. Masso-Welch, G. Verstovsek, and M. M. Ip (1999). Alterations in the expression and localization of protein kinase C isoforms during mammary gland differentiation. Eur. J. Cell Biol.
78:497–510.
Google Scholar
D. R. Griffith and C. W. Turner (1961). Normal growth of rat mammary glands during pregnancy and early lactation. Proc. Soc. Exp. Biol. Med.
106:448–450.
Google Scholar
K. Joshi, J. T. B. Ellis, C. M. Hughes, P. Monaghan, and A. M. Neville (1986). Cellular proliferation in the rat mammary gland during pregnancy and lactation. Lab. Invest.
54:52–61.
Google Scholar
R. E. Munford (1963). Changes in the mammary glands of rats and mice during pregnancy, lactation and involution 3. Relation of structural and biochemical changes. J. Endocrinol.
28:35–44.
Google Scholar
R. E. Munford (1963). Changes in the mammary glands of rats and mice during pregnancy, lactation, and involution 1. Histological structure. J. Endocrinol.
28:1–15.
Google Scholar
R. E. Munford (1964). A review of anatomical and biochemical changes in the mammary gland with particular reference to quantitative methods of assessing mammary development. Dairy Sci. Abstr.
26:293–304.
Google Scholar
J. M. Rosen, S. L. C. Woo, and J. P. Comstock (1975). Regulation of casein messenger RNA during the development of the rat mammary gland. Biochemistry
14:2895–2903.
Google Scholar
A. R. Howlett and M. J. Bissell (1993). The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epith. Cell Biol.
2:79–89.
Google Scholar
L. M. A. Maeder (1922). Changes in the mammary gland of the albino rat (Mus norvegicus albinus) during lactation and involution. Am. J. Anat.
31:1–26.
Google Scholar
I. A. Forsyth (1986). Variation among species in the endocrine control of mammary growth and function: The roles of prolactin, growth hormone, and placental lactogen. J. Dairy Sci.
69:886–903.
Google Scholar
R. E. Munford (1963). Changes in the mammary glands of rats and mice during pregnancy, lactation and involution 2. Levels of deoxyribonucleic acid, and alkaline and acid phosphatases. J. Endocrinol.
28:17–34.
Google Scholar
H. A. Tucker and R. P. Reese (1963). Nucleic acid content of mammary glands of lactating rats. Proc. Soc. Exp. Biol.
112:409–412.
Google Scholar
H. H. Traurig (1967). Cell proliferation in the mammary gland during late pregnancy and lactation. Anat. Rec.
157:489–504.
Google Scholar
L. H. Quarrie, C. V. P. Addey, and C. J. Wilde (1995). Apoptosis in lactating and involuting mouse mammary tissue demonstrated by nick-end DNA labelling. Cell Tiss. Res.
281:413–419.
Google Scholar
L. R. Lund, J. Romer, N. Thomasset, H. Solberg, C. Pyke, M. J. Bissell, K. Dano, and Z. Werb (1996). Two distinct phases of apoptosis in mammary gland involution: Proteinase-independent and-dependent pathways. Development
122:181–193.
Google Scholar
D. R. Griffith and C. W. Turner (1962). Hormonal control of mammary gland involution in the rat. Proc. Soc. Exp. Biol. Med.
110:485–487.
Google Scholar
R. C. Richards and G. K. Benson (1971). Structural changes associated with inhibition of involution of the mammary gland in the albino rat. J. Endocrinol.
51:137–148.
Google Scholar
E. A. Jones (1967). Changes in the enzyme pattern of the ammary gland of the lactating rat after hypophysectomy and weaning. Biochem. J.
103:420–427.
Google Scholar
D. J. Flint, R. A. Clegg, and C. H. Knight (1984). Effects of prolactin, progesterone and ovariectomy on metabolic activities and insulin receptors in the mammary gland and adipose tissue during extended lactation in the rat. J. Endocrinol.
102:231–236.
Google Scholar
R. C. Richards and G. K. Benson (1971). Ultrastructural changes accompanying involution of the mammary gland in the albino rat. J. Endocrinol.
51:127–135.
Google Scholar
A. Marti, Z. W. Feng, H. J. Altermatt, and R. Jaggi (1997). Milk accumulation triggers apoptosis of mammary epithelial cells. Eur. J. Cell Biol.
73:158–165.
Google Scholar
N. I. Walker, R. E. Bennett, and J. F. R. Kerr (1989). Cell death by apoptosis during involution of the lactating breast in mice and rats. Am. J. Anat.
185:19–32.
Google Scholar
I. A. Silver (1956). Vascular changes in the mammary gland during engorgement with milk. J. Physiol.
133:65P–66P.
Google Scholar
H. J. Helminen and J. L. E. Ericsson (1971). Effects of enforced milk stasis on mammary gland epithelium, with special reference to changes in lysosomes and lysosomal enzymes. Exp. Cell Res.
68:411–427.
Google Scholar
A. Håkansson, B. Zhivotovsky, S. Orrenius, H. Sabharwal, and C. Svanborg (1995). Apoptosis induced by a human milk protein. Proc. Natl. Acad. Sci. USA
92:8064–8068.
Google Scholar
M. Peaker (1980). The effect of raised intramammary presAtlas sure on mammary function in the goat in relation to the cessation of lactation. J. Physiol.
301:415–428.
Google Scholar
C. J. Wilde, C. H. Knight, and D. J. Flint (1999). Control of milk secretion and apoptosis during mammary involution. J. Mammary Gland Biol. Neoplasia
4:129–136.
Google Scholar
R. S. Talhouk, M. J. Bissell, and Z. Werb (1992). Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J. Cell Biol.
118:1271–1282.
Google Scholar
S. R. Dickson and M. J. Warburton (1992). Enhanced synthesis of gelatinase and stromelysin by myoepithelial cells during involution of the rat mammary gland. J. Histochem. Cytochem.
40:697–703.
Google Scholar
R. Strange, F. Li, S. Saurer, A. Burkhardt, and R. R. Friis (1992). Apoptotic cell death and tissue remodeling during mouse mammary gland involution. Development
115:49–58.
Google Scholar
N. Boudreau, C. J. Sympson, Z. Werb, and M. J. Bissell (1995). Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science
267:891–893.
Google Scholar
A. Martinez-Hernandez, L. M. Fink, and G. B. Pierce (1976). Removal of basement membrane in the involuting breast. Lab. Invest.
34:455–462.
Google Scholar
M. Ambili, K. Jayasree, and P. R. Sudhakaran (1998). 60K gelatinase involved in mammary gland involution is regulated by beta-estradiol. Biochim. Biophys. Acta
1403:219–231.
Google Scholar
A. Marti, B. Jehn, E. Costello, N. Keon, G. Ke, F. Martin, and R. Jaggi (1994). Protein kinaseAand AP-1 (c-Fos/JunD) are induced during apoptosis of mouse mammary epithelial cells. Oncogene
9:1213–1223.
Google Scholar
C. H. Streuli and A. P. Gilmore (1999). Adhesion-mediated signaling in the regulation of mammary epithelial cell survival. J. Mammary Gland Biol. Neoplasia
4:183–191.
Google Scholar
L. H. Quarrie, C. V. P. Addey, and C. J. Wilde (1996). Programmed cell death during mammary tissue involution induced by weaning, litter removal, and milk stasis. J. Cell. Physiol.
168:559–569.
Google Scholar
S. Pullan, J. Wilson, A. Metcalfe, G. M. Edwards, N. Goberdhan, J. Tilly, J. A. Hickman, C. Dive, and C. H. Streuli (1996). Requirement of basement membrane for the suppression of programmed cell death in mammary epithelium. J. Cell Sci.
109:631–642.
Google Scholar
K. R. Jeffers (1935). Cytology of the mammary gland of the albino rat II. Experimentally induced conditions. Am. J. Anat.
56:279–303.
Google Scholar
D. R. Pitelka, S. T. Hamamoto, J. G. Duafala, and M. K. Nemanic (1973). Cell contacts in the mouse mammary gland. J. Cell Biol.
56:797–818.
Google Scholar
D. R. Griffith and C. W. Turner (1961). Normal and experimental involution of rat mammary gland. Proc. Soc. Exp. Biol. Med.
107:668–670.
Google Scholar
H. A. Tucker and R. P. Reece (1963). Nucleic acid contents of rat mammary glands during post-lactational involution. Proc. Soc. Exp. Biol. Med.
112:370–372.
Google Scholar
R. C. Richards and G. K. Benson (1971). Involvement of the macrophage system in the involution of the mammary gland in the albino rat. J. Endocrinol.
51:149–156.
Google Scholar
C. J. Radnor (1972). Myoepithelial cell differentiation in rat mammary glands. J. Anat.
111:381–398.
Google Scholar