Skip to main content

Introduction to Mammary Gland and Its Cell Types

  • Chapter
  • First Online:
Stem Cells in Veterinary Science

Abstract

The mammary gland is a highly dynamic organ. Histostructural composition of mammary tissue varies with the animal’s physiology determined by the hormones produced at the different physiological stages. Mammary parenchyma contains various cell types: adipocytes, fibroblasts, epithelial cells, myoepithelial cells, inflammatory cells, and mammary stem cells (MaSCs). Among these various cell types, MaSC regulates mammary gland development and has a pivotal role in tissue regeneration. This chapter aims to introduce various cell types of the mammary gland and their roles in gland development and milk production. This chapter also discusses mammary stem cells, which explain the dynamic behavior of the gland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akers RM (2002) Lactation and the mammary gland. Iowa State University Press, Ames, p 278

    Google Scholar 

  • Bauman DE, Mather IH, Wall RJ, Lock AL (2006) Major advances associated with the biosynthesis of milk. J Dairy Sci 89(4):1235

    Article  CAS  PubMed  Google Scholar 

  • Berry SD, Howard RD, Jobst PM, Jiang H, Akers RM (2003) Interactions between the ovary and the local IGF-1 axis modulate mammary development in prepubertal heifers. J Endocrinol 177:295

    Article  CAS  PubMed  Google Scholar 

  • Cadar M, Miresan V, Lujerdean A, Raducu C (2012) Mammary gland histological structure in relation with milk production in sheep. J Anim Sci Biotechnol 45:3

    Google Scholar 

  • Capuco AV, Ellis SE (2013) Comparative aspects of mammary gland development and homeostasis. Annu Rev Anim Biosci 1:179

    Article  PubMed  Google Scholar 

  • Capuco AV, Akers RM, Smith JJ (1997) Mammary growth in Holstein cows during the dry period: quantification of nucleic acids and histology. J Dairy Sci 80(3):477

    Article  CAS  PubMed  Google Scholar 

  • Capuco AV, Wood DL, Baldwin R, Mcleod K, Paape MJ (2001) Mammary cell number, proliferation, and apoptosis during a bovine lactation: Relation to milk production and effect of bST. J Dairy Sci 84:2177

    Article  CAS  PubMed  Google Scholar 

  • Capuco AV, Ellis S, Wood DL, Akers RM, Garrett W (2002a) Postnatal mammary ductal growth: three-dimensional imaging of cell proliferation, effects of estrogen treatment, and expression of steroid receptors in prepubertal calves. Tissue Cell 34:143

    Article  CAS  PubMed  Google Scholar 

  • Capuco AV, Li M, Long E, Ren S, Hruska KS, Schorr K, Furth PA (2002b) Concurrent pregnancy retards mammary involution: effects on apoptosis and proliferation of the mammary epithelium after forced weaning of mice. Biol Reprod 66(5):1471

    Article  CAS  PubMed  Google Scholar 

  • Capuco AV, Evock-Clover CM, Minuti A, Wood DL (2009) In vivo expansion of the mammary stem/progenitor cell population by xanthosine infusion. Exp Biol Med 234:475

    Article  CAS  Google Scholar 

  • Carroll LS, Capecchi MR (2015) Hoxc8 initiates an ectopic mammary program by regulating Fgf10 and Tbx3 expression and Wnt/β-catenin signaling. Development 142:4056–4067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary RK (2014) Mammary stem cells: expansion and animal productivity. J Anim Sci Biotechnol 5:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhary RK, Li RW, Evock-Clover CM, Capuco AV (2013) Comparison of the transcriptomes of long-term label retaining-cells and control cells microdissected from mammary epithelium: an initial study to characterize potential stem/progenitor cells. Front Oncol 3:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhary RK, Pathak D, Choudhary S, Verma R (2018) Immunolocalization of estrogen alpha and progesterone beta receptors in goat mammary gland. Indian J Anim Sci 88:31

    Article  Google Scholar 

  • Colitti M, Farinacci M (2009) Cell turnover and gene activities in sheep mammary glands prior to lambing to involution. Tissue Cell 41:326

    Article  CAS  PubMed  Google Scholar 

  • Daniels KM, Capuco AV, McGilliard ML, James RE, Akers RM (2009) Effects of milk replacer formulation on measures of mammary growth and composition in holstein heifers. J Dairy Sci 92:5937

    Article  CAS  PubMed  Google Scholar 

  • Delouis C, Richard PH (1991) La lactation. In: Thibault C, Levasseur MC (eds) La reproduction chezlesmammifères et l’homme. INRA, Paris, p 487

    Google Scholar 

  • Dyce KM, Sack WO, Wensing CJG (2002) Text book of veterinary anatomy, 3rd edn. Saunders, Philadelphia, p 723

    Google Scholar 

  • Elsayed EH, ElShafie MH, Saifelnasr EOH, Abu El-Ella AA (2009) Histological and histochemical study on mammary gland of Damascus goats through stages of lactation. Small Rumin Res 85:11

    Article  Google Scholar 

  • Finot L, Chanat E, Dessauge F (2018) Molecular signature of the putative stem/progenitor cells committed to the development of the bovine mammary gland at puberty. Sci Rep 8:16194

    Article  PubMed  PubMed Central  Google Scholar 

  • Frandson DR, Wilke WL, Fails AD (2009) Anatomy and physiology of farm animals, 7th edn. Wiley, New York, pp 449–456

    Google Scholar 

  • Goodwin K, Nelson CM (2018) Myoepithelial crow control of cancer cells. J Cell Biol 217(10):3319–3321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hovey RC, Aimo L (2010) Diverse and active roles for adipocytes during mammary gland growth and function. J Mammary Gland Biol Neoplasia 15:279–290

    Article  PubMed  PubMed Central  Google Scholar 

  • Hovey RC, Davey HW, Mackenzie DD, McFadden TB (1998) Ontogeny and epithelial-stromal interactions regulate IGF expression in the ovine mammary gland. Mol Cell Endocrinol 136(2):139–144

    Article  CAS  PubMed  Google Scholar 

  • Hughes K, Watson CJ (2012) The spectrum of STAT functions in mammary gland development. JAKSTAT 1(3):151

    PubMed  PubMed Central  Google Scholar 

  • Hughes K, Watson CJ (2018) The mammary microenvironment in mastitis in humans, dairy ruminants, rabbits and rodents: a one health focus. J Mammary Gland Biol Neoplasia 23(1–2):27

    Article  PubMed  PubMed Central  Google Scholar 

  • Inman JL, Robertson C, Mott JD, Bissell MJ (2015) Mammary gland development: cell fate specification, stem cells and the microenvironment. Development 142:1028

    Article  CAS  PubMed  Google Scholar 

  • Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL, Stingl J, Waterhouse PD, Khokha R (2010) Progesterone induces adult mammary stem cell expansion. Nature 465:803

    Article  CAS  PubMed  Google Scholar 

  • Joshi PA, Waterhouse PD, Kasaian K et al (2019) PDGFRα+ stromal adipocyte progenitors transition into epithelial cells during lobulo-alveologenesis in the murine mammary gland. Nat Commun 10:1760

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaimala S, Bisana S, Kumar S (2012) Mammary gland stem cells: more puzzles than explanations. J Biosci 37:349

    Article  CAS  PubMed  Google Scholar 

  • Kordon EC, Smith GH (1998) An entire functional mammary gland may comprise the progeny from a single cell. Development 125:1921

    Article  CAS  PubMed  Google Scholar 

  • Li RW, Meyer MJ, Van Tassell CP, Sonstegard TS, Connor EE, Van Amburgh ME, Boisclair YR, Capuco AV (2006) Identification of estrogen-responsive genes in the parenchyma and fat pad of the bovine mammary gland by microarray analysis. Physiol Genomics 27(1):42–53

    Article  CAS  PubMed  Google Scholar 

  • Liu TM, Martina M, Hutmacher DW, Hui JHP, Lee EH, Lim B (2007) Identification of common pathways mediating differentiation of bone marrow and adipose tissue derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 25(3):750

    Article  PubMed  Google Scholar 

  • Macias H, Hinck L (2012) Mammary gland development. Dev Biol 1(4):533

    CAS  Google Scholar 

  • Martignani E, Cravero D, Miretti S, Accornero P, Baratta M (2014) Bovine mammary stem cells: new perspective for dairy science. Vet Q 34:52

    Article  CAS  PubMed  Google Scholar 

  • Meyer MJ, Capuco AV, Ross DA, Lintault LM, Van Amburgh ME (2006) Developmental and nutritional regulation of the prepubertal bovine mammary gland. I. Epithelial cell proliferation, parenchymal accretion rate, and allometric growth. J Dairy Sci 89:4298

    Article  CAS  PubMed  Google Scholar 

  • Quarrie LH, Addey CV, Wilde CJ (1996) Programmed cell death during mammary tissue involution induced by weaning, litter removal, and milk stasis. J Cell Physiol 168(3):559

    Article  CAS  PubMed  Google Scholar 

  • Rios AC, Fu NY, Lindeman GJ, Visvader JE (2014) In situ identification of bipotent stem cells in the mammary gland. Nature 506:322

    Article  CAS  PubMed  Google Scholar 

  • Rowson AR, Daniels KM, Ellis SE, Hovey RC (2012) Growth and development of the mammary glands of livestock: a veritable barnyard of opportunities. Semin Cell Dev Biol 23(5):557

    Article  PubMed  Google Scholar 

  • Samuelson DA (2006) Textbook of veterinary histology. Saunders, Township, p 474

    Google Scholar 

  • Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Swanson KM, Henderson HV, Erdman RA, Stelwagen K (2015) The effect of milking reinitiation following extended nonmilking periods on lactation in primiparous dairy cows. J Dairy Sci 98(11):7666

    Article  CAS  PubMed  Google Scholar 

  • Sinha YN, Tucker HA (1969) Mammary development and pituitary prolactin level of heifers from birth through puberty and during the estrous cycle. J Dairy Sci 52:507

    Article  CAS  PubMed  Google Scholar 

  • Stelwagen K, Phyn CVC, Davis SR, Guinard-Flament J, Pomiès D, Roche JR, Kay JK (2013) Invited review: reduced milking frequency: milk production and management implications. J Dairy Sci 96:3401

    Article  CAS  PubMed  Google Scholar 

  • Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993

    Article  CAS  PubMed  Google Scholar 

  • Tyler HD, Ensminger ME (2006) Dairy cattle science. Pearson Prentice Hall, London

    Google Scholar 

  • van Amerongen R, Bowman AN, Nusse R (2012) Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland. Cell Stem Cell 11:387

    Article  PubMed  Google Scholar 

  • Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, Sharma N, Dekoninck S, Blanpain C (2011) Distinct stem cells contribute to mammary gland development and maintenance. Nature 479:189

    Article  PubMed  Google Scholar 

  • Velayudhan BT, Huderson BP, Ellis SE, Parsons CL, Hovey RC, Rowson AR, Akers RM (2015) Ovariectomy in young prepubertal dairy heifers causes complete suppression of mammary progesterone receptors. Domest Anim Endocrinol 51:8–18

    Article  CAS  PubMed  Google Scholar 

  • Vilar MJ, Rajala-Schultz PJ (2020) Dry-off and dairy cow udder health and welfare: effects of different milk cessation methods. Vet J 262:105503

    Article  CAS  PubMed  Google Scholar 

  • Wagner KU, Boulanger CA, Henry MD, Sgagias M, Hennighausen L, Smith GH (2002) An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development 12(9):137786

    Google Scholar 

  • Zhou J, Chen Q, Zou Y, Zheng S, Chen Y (2019) Stem cells and cellular origins of mammary gland: updates in rationale, controversies, and cancer relevance. Stem Cells Int 2019:4247168

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, T.P., Verma, R., Choudhary, R.K. (2021). Introduction to Mammary Gland and Its Cell Types. In: Choudhary, R.K., Choudhary, S. (eds) Stem Cells in Veterinary Science. Springer, Singapore. https://doi.org/10.1007/978-981-16-3464-2_2

Download citation

Publish with us

Policies and ethics