Skip to main content
Log in

Waveguide Cross Section and Background Magnetic Field Tapers for Broadbanding a Gyro-TWT

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

The gyro-TWT in a cylindrical waveguide of linearly-tapered cross section was analyzed for the gain-frequency response, using the Pierce-type gain equation. The taper in the waveguide cross section was adjusted for wide device bandwidths, either by changing the taper angle, while keeping the interaction length to be constant, or by changing the interaction length, while keeping the initial and final radii of the waveguide constant. Tapering led to the prediction of wide bandwidths, though at the cost of gain, as compared to a non-tapered device. The range of the DC background magnetic flux density relative to its grazing-point value was identified as a crucial parameter for large gains, with appreciable bandwidths, and minimum mode mixing in a tapered device, the latter in general facing more mode competition than a non-tapered device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. R. Cheo and A. Rekiouak, “Linear and nonlinear analyses of a wideband gyro-TWT”, IEEE Trans. Electron Dev., vol. ED-36, pp. 802–810, 1989.

    Google Scholar 

  2. K. R. Chu, A. T. Drobot, V. L. Granatstein, and J. L. Seftor, “Characteristics and optimum operating parameters of a gyrotron traveling-wave amplifier”, IEEE Trans. Microwave Theory Tech., vol. MTT-27, pp. 178–187, 1979.

    Google Scholar 

  3. K. R. Chu, Y. Y. Lau, L. R. Barnett, and V. L. Granatstein, “Theory of a wide-band distributed gyrotron traveling-wave amplifier”, IEEE Trans. Electron Dev., vol. ED-28, pp. 866–871, 1981.

    Google Scholar 

  4. J. Y. Choe and H.S. Uhm, “Theory of gyrotron amplifier in disc and helix loaded waveguides,” Int. J. Electron., vol. 53, pp. 729–741, 1982.

    Google Scholar 

  5. S. J. Rao, P. K. Jain, and B. N. Basu, “Broadbanding of a gyro-TWT by dielectric loading through dispersion shaping”, IEEE Trans. Electron Dev., vol. ED-43, pp. 2290–2299, 1996.

    Google Scholar 

  6. J. Y. Choe and S. Ahn, “General mode analysis of a gyrotron dispersion relation”, IEEE Trans. Electron Dev., vol. ED-28, pp. 94–102, 1981.

    Google Scholar 

  7. K. C. Leou, D. B. McDermott, and N. C. Luhmann, Jr., “Dielectric-loaded wideband gyro-TWT”, IEEE Trans. Plasma Sci., vol. PS-20, pp. 188–196, 1992.

    Google Scholar 

  8. A. K. Ganguly and S. Ahn, “Large signal theory of two stage wide-band gyro-TWT”, IEEE Trans. Electron Dev., vol. ED-31, pp. 474–480, 1984.

    Google Scholar 

  9. S. Ahn, “Gain and bandwidth of a gyrotron amplifier with tapered rectangular waveguide”, Int. J. Electron., vol. 53, pp. 673–679, 1982.

    Google Scholar 

  10. G. S. Park, S. Y. Park, R. H. Kyser, C. M. Armstrong, A. K. Ganguly, and R. K. Parker, “Broadband operation of a Ka-Band tapered gyro-traveling-wave amplifier”, IEEE Trans. Plasma Sci., vol. PS-22, pp. 536–543, 1994.

    Google Scholar 

  11. G. S. Park, J. J. Choi, S. Y. Park, C. M. Armstrong, A. K. Ganguly, R. H. Kyser, “Gain broadening of two stage tapered gyrotron traveling wave amplifier”, Phys. Rev. Lett., vol. 74, pp. 2399–2402, 1995.

    Google Scholar 

  12. S. J. Rao, P. K. Jain, and B. N. Basu, “Two-stage dielectric-loading for broadbanding a gyro-TWT”, IEEE Electron Dev. Lett., vol. 17, pp. 303–305, 1996.

    Google Scholar 

  13. A. J. Sangster, “Small-signal analysis of the travelling-wave gyrotron using Pierce parameters”, Proc. IEE, Pt. I, vol. 127, pp. 45–52, 1980.

    Google Scholar 

  14. A. W. Fliflet, “Linear and nonlinear theory of the Doppler-shifted cyclotron resonance maser based on TE and TM waveguide modes”, Int. J. Electron., vol. 61, pp. 1049–1080, 1986.

    Google Scholar 

  15. B. N. Basu, Electromagnetic theory and applications in beam-wave electronics, World Scientific, Singapore, 1996.

    Google Scholar 

  16. J. R. Pierce, Traveling-Wave Tubes, Van Nostrand, New York, 1950.

    Google Scholar 

  17. J. M Baired and W. Lawson, “Magnetron injection gun (MIG) design for gyrotron applications”, Int. J. Electron., vol. 61, pp. 953–967, 1986.

    Google Scholar 

  18. Lawson, “Theoretical evaluation of nonlinear tapers for a high-power gyrotron”, IEEE Trans. Microwave Theory Tech., vol. MTT-38, pp. 1617–1622, 1990.

    Google Scholar 

  19. X. Cheng-He and L. Zhang, “Theoretical analysis of gyrotron amplifier with undulated waveguide”, Int. J. Electron., vol. 57, pp. 1175–1189, 1984.

    Google Scholar 

  20. R. W. Grow and U. A. Shrivastava, “Impedance calculations for travelling wave-gyrotrons operating at harmonics of the cyclotron frequency in magnetron-type circuits”, Int. J. Electron., vol. 53, pp. 699–707, 1982.

    Google Scholar 

  21. C. K. Chong, D. B. McDermott, A.T. Lin, W. J. Dehope, Q. S. Wang, and N. C. Luhmann, Jr., “Stability of a 95GHz slotted third-harmonic gyro-TWT amplifier”, IEEE Trans. Plasma Sci., vol. PS-24, pp. 735–743, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, M., Sridhar, T.R., Jain, P.K. et al. Waveguide Cross Section and Background Magnetic Field Tapers for Broadbanding a Gyro-TWT. International Journal of Infrared and Millimeter Waves 21, 1255–1267 (2000). https://doi.org/10.1023/A:1026448000149

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026448000149

Navigation