Skip to main content
Log in

Electrochemical study and complete factorial design of Toluidine Blue immobilized on SiO2/Sb2O3 binary oxide

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

SiO2/Sb2O3 of specific surface area S BET = 788 m2 g−1 and 4.7 wt % of Sb was prepared by the sol–gel method. Toluidine Blue (TB+) was immobilized on SiO2/Sb2O3 by ion exchange reactions and the amount of dye bonded to the substrate surface was 13.72 μmol g−1 for SiO2/Sb2O3. This material was used to modify carbon paste electrodes and the electrochemical properties of Toluidine Blue (TB+) immobilized on a silica surface modified with antimonium trioxide were investigated by cyclic voltammetry. The electron mediator property of toluidine blue was optimized using a factorial design, consisting of four factors each at two levels. Factorial analysis was carried out by searching for better reversibility of the redox process, that is, the lowest separation between anodic and cathodic peak potentials and a current ratio near unity. The aqueous phase pH does not appear to influence the peak separation, ΔE, and the |I pa//I pc| current ratio response. The other factors studied, the scan rate, type of electrolyte and electrolyte concentration are important for this chemically modified electrode system demonstrating significant influences on the reversibility of electron transfer. The experimental observations and data analyses on this system indicate that the smallest peak separation occurs using 20 mV s−1 and 1.0 mol L−1 KCl while values of |I pa//I pc| close to unity are found for 20 mV s−1 with 1.0 mol L−1 concentrations of either KCl or CH3COONa. The electrodes presented reproducible responses and were chemically stable for various oxidation-reduction cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Zaitseva, Y. Gushikem, E.S. Ribeiro and S.S. Rosatto, Electrochim. Acta 47 (2002) 1469.

    Google Scholar 

  2. X.T. Gao, J.L.G. Fierro and I.E. Wachs, Langmuir 15 (1999) 3169.

    Google Scholar 

  3. V. Menon, V.T. Popa, C. Contescu and J.A. Schwarz, Rev. Roum. Chim. 43 (1998) 393.

    Google Scholar 

  4. J.M. Miller and L.J. Lakshmi, J. Phys. Chem. B 102 (1998) 6465.

    Google Scholar 

  5. H. Kochkar and F. Figueras, J. Catal. 171 (1997) 420.

    Google Scholar 

  6. D.C.M. Dutoit, M. Schneider, P. Fabrizioli and A. Baiker, J. Mater. Chem. 7 (1997) 271.

    Google Scholar 

  7. A.M. Castellani and Y. Gushikem, J. Colloid Interface Sci. 230 (2000) 195.

    Google Scholar 

  8. J.E. Gonçalves, Y. Gushikem and S.C. de Castro, J. Non-Cryst. Solids 260 (1999) 125.

    Google Scholar 

  9. A. Walcarius, Electroanalysis 10 (1998) 1217.

    Google Scholar 

  10. C.U. Ferreira, Y. Gushikem and L.T. Kubota, J. Solid State Electr. 4 (2000) 298.

    Google Scholar 

  11. H. Galip, H. Hasipoglu and G. Gunduz, J. Appl. Polym. Sci. 74 (1999) 2906.

    Google Scholar 

  12. H. Sato, K. Kondo, S. Tsuge, H. Ohtani and N. Sato, Polym. Degrad. Stabil. 62 (1998) 41.

    Google Scholar 

  13. H.C. Jung, W.N. Kim, C.R. Lee, K.S. Suh and S.R. Kim, J. Polym. Eng. 18 (1998) 115.

    Google Scholar 

  14. P. Carty and W. White, Polym. Degrad. Stabil. 47 (1995) 305.

    Google Scholar 

  15. M. Nalin, M. Poulain, S.J.L. Ribeiro and Y. Messaddeq, J. Non-Cryst. Solids 284 (2001) 110.

    Google Scholar 

  16. U.A. Schubert, F. Anderle, J. Spengler, J. Zuhlke, H.J. Eberle, R.K. Grasselli and H. Knozinger, Top. Catal. 15 (2001) 195.

    Google Scholar 

  17. J.H. Youk, R.P. Kambour and W.J. MacKnight, Macromolecules 33 (2000) 3594.

    Google Scholar 

  18. H.F. Zanthoff, W. Grunert, S. Buchholz, M. Heber, L. Stieveno, F.E. Wagner and G.U. Wolf, J. Mol. Catal. A-Chem. 162 (2000) 435.

    Google Scholar 

  19. V.P. Vislovskiv, V.Y. Bychkov, M.Y. Siney, N.T. Shamilov, P. Ruiz and Z. Schay, Catal. Today 61 (2000) 325.

    Google Scholar 

  20. C. Janardanan and S.M.K. Nair, Indian J. Chem. 31A (1992) 136.

    Google Scholar 

  21. C. Janardanan and S.M.K. Nair, Analyst 115 (1990) 85.

    Google Scholar 

  22. L.T. Kubota, F. Gouveia, A.N. Andrade, B.G. Milagres and G. Oliveira Neto, Electrochim. Acta 41 (1996) 1465.

    Google Scholar 

  23. E.F. Perez, G. Oliveira Neto and L.T. Kubota, Sensors Actuators B 72 (2001) 80.

    Google Scholar 

  24. J.M. Ottaway, in A.J. Bard (Ed.), ‘Indicators’ (Pergamon, Oxford, 1972), pp. 469-529.

    Google Scholar 

  25. L. Gorton, A. Tortensson, H. Jaegfeldt and G. Johansson, J. Electroanal. Chem. 161 (1984) 103.

    Google Scholar 

  26. Q. Chi and S. Dong, Electroanalysis 7 (1995) 147.

    Google Scholar 

  27. A. Malinauskas, T. Ruzgas and L. Gorton, J. Electroanal. Chem. 484 (2000) 55.

    Google Scholar 

  28. C.A. Pessoa, Y. Gushikem, L.T. Kubota and L. Gorton, J. Electroanal. Chem. 431 (1997) 23.

    Google Scholar 

  29. C.A. Pessoa, Y. Gushikem and L.T. Kubota, Electroanalysis 9 (1997) 800.

    Google Scholar 

  30. A. Walcarius, Electroanalysis 13 (2001) 701.

    Google Scholar 

  31. B. de Barros Neto, I.S. Scarminio and R.E. Bruns, in ‘Como fazer experimentos: Pesquisa e Desenvolvimento na Ciência e na IndÚstria’, (Editora da UNICAMP, Campinas-SP, Brazil, 2001).

    Google Scholar 

  32. G.E.P. Box, W.G. Hunter and J.S. Hunter, ‘Statistics for experiments’, (Wiley, New York, 1978).

    Google Scholar 

  33. ‘Statistica for Windows’, VERSION 5.0 (Statsoft, Inc., Tulsa, OK, 1995).

  34. A.A. Ensofi, T. Khayamian and B. Hemmateenejad, Anal. Lett. 32 (1999) 111.

    Google Scholar 

  35. R.F. Rocha, S.S. Rosatto, R.E. Bruns and L.T. Kubota, J. Electroanal. Chem. 433 (1997) 73.

    Google Scholar 

  36. M.E.P. Hows, D. Perrett and J. Kay, J. Chromatogr. A. 768 (1997) 97.

    Google Scholar 

  37. P.J. Goodhew and F.J. Humphreys, ‘Electron Microscopy and Analysis’, 2nd edn (Taylor & Francis, London, 1992).

    Google Scholar 

  38. J.A. Bearden, Ver. Mod. Phys. 39 (1967) 78.

    Google Scholar 

  39. L. Antonov, G. Gergov, V. Petrov, M. Kubista and J. Nygren, Talanta 49 (1999) 99.

    Google Scholar 

  40. D.D. Schlereth and A.A. Karyakin, J. Electroanal. Chem. 395 (1995) 221.

    Google Scholar 

  41. P.D. Atkins, ‘Physical Chemistry’, 6th edn (OUP, Oxford, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Gushikem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, E., Dias, S., Fujiwara, S. et al. Electrochemical study and complete factorial design of Toluidine Blue immobilized on SiO2/Sb2O3 binary oxide. Journal of Applied Electrochemistry 33, 1069–1075 (2003). https://doi.org/10.1023/A:1026289225314

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026289225314

Navigation